Answer on Question \#55791 - Math - Calculus

2. If $f(x, y)=\tan ^{\wedge}-1 y / x$, find $f x$.
3. Suppose $f(x, y)=x^{\wedge} 3 y^{\wedge} 2-\sin ^{\wedge} 2 x \cos 2 y$, what is $\partial f / \partial y$?
4. Suppose $f(x, y)=\sin ^{\wedge} 2 x \cos y+x y^{\wedge} 2$, what is $\partial f / \partial x$?
5. If $f(x, y)=x^{\wedge} 2 y^{\wedge} 3-2 y^{\wedge}-2$, find $f y$
6. If $f(x, y)=4 x^{\wedge} 3-3 y^{\wedge} 2$, find $f x$

Solution

2. $\mathrm{f}(\mathrm{x}, \mathrm{y})=\tan ^{-1} y / x$

If $\tan ^{-1}$ means the inverse of the tangent, then the answer will be
$\mathrm{f}_{\mathrm{x}}=\frac{\partial \mathrm{f}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{x}}=\left(\tan ^{-1}(\mathrm{y} / \mathrm{x})\right)_{\mathrm{x}}^{\prime}=(\arctan (\mathrm{y} / \mathrm{x}))_{\mathrm{x}}^{\prime}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} *\left(\frac{y}{x}\right)_{x}^{\prime}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} *\left(-\frac{y}{x^{2}}\right)$
$\mathrm{f}_{\mathrm{x}}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} *\left(-\frac{y}{x^{2}}\right)=-\frac{y}{x^{2}\left(1+\left(\frac{y}{x}\right)^{2}\right)}=-\frac{y}{x^{2}+y^{2}}$,
because $\frac{\partial(\arctan (\mathrm{t}))}{\partial \mathrm{t}}=\frac{1}{1+t^{2}}, \frac{\partial\left(x^{\mathrm{n}}\right)}{\partial \mathrm{x}}=n x^{\mathrm{n}-1}$, where n is integer, and the chain rule of differentiation was applied.

If $\tan ^{-1}$ means the tangent raised to the power of (-1), then the answer will be
$\mathrm{f}_{\mathrm{x}}=\frac{\partial \mathrm{f}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{x}}=\left(\tan ^{-1}(\mathrm{y} / \mathrm{x})\right)_{\mathrm{x}}^{\prime}=-\tan ^{-2}\left(\frac{\mathrm{y}}{\mathrm{x}}\right) \frac{1}{\cos ^{2}\left(\frac{y}{x}\right)}((\mathrm{y} / \mathrm{x}))_{\mathrm{x}}^{\prime}=-\frac{1}{\tan ^{2}\left(\frac{y}{x}\right)} \cdot \frac{1}{\cos ^{2}\left(\frac{y}{x}\right)} \cdot\left(-\frac{y}{x^{2}}\right)=$ $=\frac{y}{x^{2} \sin ^{2}(y / x)}$, because $\frac{\partial\left(x^{\mathrm{n}}\right)}{\partial \mathrm{x}}=n x^{\mathrm{n}-1}$, where n is integer, $\frac{\partial(\tan (\mathrm{t}))}{\partial \mathrm{t}}=\frac{1}{\cos ^{2}(t)}$, and the chain rule of differentiation was applied
3. $f(x, y)=x^{3} y^{2}-\sin ^{2}(x) \cos (2 y)$
$\frac{\partial \mathrm{f}}{\partial \mathrm{y}}=x^{3} \cdot 2 y-\sin ^{2}(x) \cdot(-\sin (2 y) \cdot 2)=2 x^{3} y+2 \sin ^{2}(x) \sin (2 y)$,
because $\frac{\partial(\mathrm{p}-\mathrm{q})}{\partial \mathrm{y}}=\frac{\partial(\mathrm{p})}{\partial \mathrm{y}}-\frac{\partial(\mathrm{q})}{\partial \mathrm{y}}, \quad \frac{\partial(\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{y}))}{\partial \mathrm{y}}=g(x) \frac{\partial(\mathrm{h}(\mathrm{y}))}{\partial \mathrm{y}}, \quad \frac{\partial\left(y^{\mathrm{n}}\right)}{\partial \mathrm{y}}=n y^{\mathrm{n}-1}$, where n is integer,
$\frac{\partial(a \mathrm{~h}(\mathrm{y}))}{\partial \mathrm{y}}=a \frac{\partial(\mathrm{~h}(\mathrm{y}))}{\partial \mathrm{y}}$, where a is a constant,
$\frac{\partial(\cos (\mathrm{t}))}{\partial \mathrm{t}}=-\sin (t)$,
and the chain rule of differentiation was applied.
4. $f(x, y)=\sin ^{2}(x) \cos (y)+x y^{2}$ $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}=2 \sin (x) \frac{\partial \sin (\mathrm{x})}{\partial \mathrm{x}} \cos (y)+y^{2}=2 \sin (x) \cos (\mathrm{x}) \cos (\mathrm{y})+y^{2}=\sin (2 x) \cos (y)+y^{2}$, because $\frac{\partial(\mathrm{p}+\mathrm{q})}{\partial \mathrm{x}}=\frac{\partial(\mathrm{p})}{\partial \mathrm{x}}+\frac{\partial(\mathrm{q})}{\partial \mathrm{x}}, \frac{\partial(\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{y}))}{\partial \mathrm{x}}=h(y) \frac{\partial(\mathrm{g}(\mathrm{x}))}{\partial \mathrm{x}}, \frac{\partial\left(x^{\mathrm{n}}\right)}{\partial \mathrm{x}}=n x^{\mathrm{n}-1}$, where n is integer, $\frac{\partial(\sin (\mathrm{t}))}{\partial \mathrm{t}}=\cos (t)$, and the chain rule of differentiation was applied.
5. $f(x, y)=x^{2} y^{3}-2 y^{-2}$
$\mathrm{f}_{\mathrm{y}}=x^{2} \cdot\left(3 y^{2}\right)-2 \cdot(-2) \cdot y^{-3}=3 x^{2} y^{2}+4 y^{-3}$, because $\frac{\partial(\mathrm{p}-\mathrm{q})}{\partial \mathrm{y}}=\frac{\partial(\mathrm{p})}{\partial \mathrm{y}}-\frac{\partial(\mathrm{q})}{\partial y}$, $\frac{\partial(\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{y}))}{\partial \mathrm{y}}=g(x) \frac{\partial(\mathrm{h}(\mathrm{y}))}{\partial \mathrm{y}}, \frac{\partial(a \mathrm{~h}(\mathrm{y}))}{\partial \mathrm{y}}=a \frac{\partial(\mathrm{~h}(\mathrm{y}))}{\partial \mathrm{y}}$, where a is a constant, $\quad \frac{\partial\left(y^{\mathrm{n}}\right)}{\partial \mathrm{y}}=n y^{\mathrm{n}-1}$, where n is integer,
6. $f(x, y)=4 x^{3}-3 y^{2}$
$\mathrm{f}_{\mathrm{x}}=4 \cdot 3 \cdot x^{2}=12 x^{2}$, because $\frac{\partial(\mathrm{p}-\mathrm{q})}{\partial \mathrm{x}}=\frac{\partial(\mathrm{p})}{\partial \mathrm{x}}-\frac{\partial(\mathrm{q})}{\partial \mathrm{x}}, \frac{\partial(\mathrm{ag}(\mathrm{x}))}{\partial \mathrm{x}}=a \frac{\partial(\mathrm{~g}(\mathrm{x}))}{\partial \mathrm{x}}$, where a is a constant, $\frac{\partial\left(x^{\mathrm{n}}\right)}{\partial \mathrm{x}}=n x^{\mathrm{n}-1}, \frac{\partial\left(y^{2}\right)}{\partial \mathrm{x}}=0$, where n is integer.

Answer:

2. $\mathrm{f}_{\mathrm{x}}=-\frac{y}{x^{2}+y^{2}}$
3. $\frac{\partial \mathrm{f}}{\partial \mathrm{y}}=2 x^{3} y+2 \sin ^{2}(x) \sin (2 y)$
4. $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}=\sin (2 x) \cos (y)+y^{2}$
5. $\mathrm{f}_{\mathrm{y}}=3 x^{2} y^{2}+4 y^{-3}$
6. $\mathrm{f}_{\mathrm{x}}=12 x^{2}$
