Answer on Question #55616 - Math - Statistics and Probability

Two-sample T for MetRate

Sex	Ν	Mean	StDev	SEMean	
Male	75	1626	227	26	
Female 75		1258	172	20	

Difference = μ (Male) - μ (Female)

Estimate for difference: 367.9

95% CI for difference: (****, ****)

T-Test of difference = 0 (vs ≠): T-Value = **** P-Value = **** DF = ****

Both use Pooled StDev = 201.5088

Is there a difference between the average metabolic rate of adolescent males and adolescent females? Hypothesis Test:

Solution

We have 75 + 75 - 2 = 148 degrees of freedom.

$$T^* = t_{148, \frac{1-0.95}{2}} = t_{148, 0.025} = 1.9761.$$

A 95% confidence interval to estimate the difference between the average MetRate of males and females is

$$CI = \left(367.9 - 1.9761 \cdot 201.5088 \sqrt{\frac{1}{75} + \frac{1}{75}}; 367.9 + 1.9761 \cdot 201.5088 \sqrt{\frac{1}{75} + \frac{1}{75}}\right)$$
$$= (302.87; 432.93)$$

This confidence interval doesn't include zero, so we can say that there is a difference between the average metabolic rate of adolescent males and adolescent females.

Using Hypothesis Test:

 $H_0: \mu_1 - \mu_2 = 0; \ H_a: \mu_1 - \mu_2 \neq 0$ $T - Value = \frac{367.9}{201.5088\sqrt{\frac{1}{75} + \frac{1}{75}}} = 11.180.$

From t-table we can see

$$p - value < 0.001.$$

So we can reject the null hypothesis at 0.1% significance level and conclude that there is a difference between the average metabolic rate of adolescent males and adolescent females.