Answer on Question \#55601 - Math - Calculus

Determine if the series converge absolutely, converge conditionally, or diverge. If it is absolutely convergent, find its sum.
a) $\quad \sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+2^{-n}\right)$;
b) $\quad \sum_{n=1}^{\infty}(\cos (\pi n) \arctan (n))$.

Solution

a)
$\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+2^{-n}\right)=S_{1}+S_{2}$
$S_{1}=\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}\right)=3 \sum_{n=1}^{\infty}\left(\frac{1}{n(n+1)}\right)$
$S_{2}=\sum_{n=1}^{\infty}\left(2^{-n}\right)$
The series $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}\right), \sum_{n=1}^{\infty} 2^{-n}$ have a positive terms.
These series are convergent, their sums are the following:
$S_{1}=3 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=3 \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=3 \lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+1}\right)=3 \lim _{N \rightarrow \infty}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\right.$ $\left.+\frac{1}{4}-\cdots-\frac{1}{N-1}+\frac{1}{N-1}-\frac{1}{N}\right)=3 \lim _{N \rightarrow \infty}\left(1-\frac{1}{N}\right)=3$ is finite.
$S_{2}=\frac{a_{1}}{1-q}=\left|a_{1}=2^{-1}=\frac{1}{2} ; q=\frac{1}{2}\right|=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1$ is finite.
So S_{1} and S_{2} are absolutely convergent, hence $\sum_{n=1}^{\infty}\left(\frac{3}{n(n+1)}+2^{-n}\right)$ is absolutely convergent too and its sum is
$S=S_{1}+S_{2}=3+1=4$.
b)
$\sum_{n=1}^{\infty} \cos (\pi n) \operatorname{arctg} n=\sum_{n=1}^{\infty}(-1)^{n} \arctan (n)$
$\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty}|\arctan (n)|=\frac{\pi}{2} \neq 0$

Hence, the given series $\sum_{n=1}^{\infty} \cos (\pi n) \arctan (n)$ is divergent, because the necessary condition for convergence of series does not hold.

