Answer on Question \#55355 - Math - Calculus

Question

Find a vector that has direction angles $\alpha=75^{\circ}$ and $\beta=128^{\circ}$.

Fully explain your method. Is there more than one possible answer?

Why?

What do they have in common?

Solution

There is an expression for the direction angles:

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

where α, β and γ are direction angles. Given the values of α and β, we can find the value of γ :

$$
\cos \gamma=\sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta}
$$

or

$$
\cos \gamma=-\sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta}
$$

We can see that more than one answer is possible, because there are two possible values of γ. These two vectors lie in the same line, but have opposite direction. So these vectors will be collinear.

It happens because angles α and β defines the line, but not direction on the line. We also have a set of vectors which differ in the length, because every vector can be represented as

$$
(r \cdot \cos \alpha ; r \cdot \cos \beta ; r \cdot \cos \gamma),
$$

where r is the length of the vector.

