Answer on Question \#55350 - Math - Analytic Geometry

A quadrilateral has vertices $A(-3,1), B(1,8), C(6,7)$, and $D(5,2)$. What kind of quadrilateral is it? Explain using the vectors.

Solution

Draw a rectangle $A B C D$ in the Cartesian coordinate system

Consider the sides of the quadrilateral as vectors.
We find coordinates and moduli of vectors $\overrightarrow{A B}, \overrightarrow{B C}, \overrightarrow{C D}, \overrightarrow{D A}$.
Coordinates
$\overrightarrow{A B}=\left(x_{B}-x_{A} ; y_{B}-y_{A}\right)=(1-(-3) ; 8-1)=(1+3 ; 8-1)=(4 ; 7) ;$
modulus
$|\overrightarrow{A B}|=\sqrt{x_{A B}^{2}+y_{A B}^{2}}=\sqrt{4^{2}+7^{2}}=\sqrt{65}$.
Coordinates
$\overrightarrow{B C}=\left(x_{C}-x_{B} ; y_{C}-y_{B}\right)=(6-1 ; 7-8)=(5 ;-1)$;
modulus
$|\overrightarrow{B C}|=\sqrt{x_{B C}^{2}+y_{B C}^{2}}=\sqrt{5^{2}+(-1)^{2}}=\sqrt{26}$.

Coordinates

$\overrightarrow{C D}=\left(x_{D}-x_{C} ; y_{D}-y_{C}\right)=(5-6 ; 2-7)=(-1 ;-5) ;$
modulus

$$
|\overrightarrow{C D}|=\sqrt{x_{C D}^{2}+y_{C D}^{2}}=\sqrt{(-1)^{2}+(-5)^{2}}=\sqrt{26} .
$$

Coordinates
$\overrightarrow{D A}=\left(x_{A}-x_{D} ; y_{A}-y_{D}\right)=(-3-5 ; 1-2)=(-8 ;-1)$;
modulus
$|\overrightarrow{D A}|=\sqrt{x_{D A}^{2}+y_{D A}^{2}}=\sqrt{(-8)^{2}+(-1)^{2}}=\sqrt{65}$.
As the vectors are not collinear, then the sides are not parallel. Notice that the sides of a quadrilateral are pairwise identical: $A B=A D$ and $C B=C D$.

According to the definition, this quadrilateral is a deltoid, also known as a kite.
A kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other.

Answer: this quadrilateral is a deltoid.

