Answer on Question \#55094 - Math - Analytic Geometry

Suppose the point $P=(1,2)$ lies on line L . Suppose that the angle between the line and the vector $N=<3,4>$ is 90° (whenever this happens we say vector N is normal to the line). Let $Q=(x, y)$ be another point on the line L. Use the fact that N is orthogonal to $P Q$ to obtain an equation of the line L.

Solution

Vector $\overrightarrow{P Q}=<x-x_{0}, y-y_{0}>=<x-1, y-2>$ lies on the line L.
If \vec{N} is orthogonal to $\overrightarrow{P Q}$, then the general form of an equation of the line L is the following:

$$
n 1\left(x-x_{0}\right)+n 2\left(y-y_{0}\right)=0
$$

where $\vec{N}=<\mathrm{n} 1, \mathrm{n} 2>$ is a normal vector and $\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ is a point, which lies on the line L .

So in this case we have $\vec{N}=<3,4>$ and $\mathrm{P}(1,2)$, that is, $\mathrm{n} 1=3, \mathrm{n} 2=4, \mathrm{x}_{0}=1, \mathrm{y}_{0}=2$.

After substitution we shall obtain

$$
3(x-1)+4(y-2)=0 \Rightarrow 3 x-3+4 y-8=0 \Rightarrow 3 x+4 y-11=0
$$

Answer: $3 x+4 y-11=0$.

