Answer on Question #54903 – Math – Calculus

Find the radius of convergence and interval of convergence

of the series

1. Sum of $((-1)^n)(x^n)/((1/n)^3)$ with n=1 ->infinite

2. Sum of $((-1)^n)(x^n)/(n^2)$ with n=1 ->infinite

3. Sum of $(n^n)(x^n)$ with n=1 ->infinite

4. Sum of $((2x-1)^n)/(5(1/n)^n)$ with n=1 ->infinite

Solution

$$\mathbf{1.}\sum_{n=1}^{\infty}a_{n}x^{n}=\sum_{n=1}^{\infty}(-1)^{n}\cdot x^{n}n^{3}$$

The radius of convergence is $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n n^3}{(-1)^{n+1} (n+1)^3} \right| = \lim_{n \to \infty} \left| \frac{(n)^3}{(n+1)^3} \right| = 1.$

The series converges if -1 < x < 1, and diverges if x < -1 or x > 1.

At the endpoint x = -1 we have $\sum_{n=1}^{\infty} n^3$, at the endpoint x = 1 we have $\sum_{n=1}^{\infty} (-1)^n n^3$. In both cases $(-1)^n n^3$ and n^3 do not converge to zero as $n \to \infty$, hence both series diverge.

If $x = \mp 1 \Rightarrow \sum_{n=1}^{\infty} a_n x^n$ is not convergent.

interval of convergence $x \in (-1;1)$.

$$2 \cdot \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{(-1)^n \cdot x^n}{n^2}$$

The radius of convergence is $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\left(\frac{-1}{n^2} \right)^n}{\left(\frac{-1}{n^2} \right)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\left(n+1 \right)^2}{\left(n \right)^2} \right| = 1$,

If $x = \mp 1 \Rightarrow \sum_{n=1}^{\infty} a_n x^n$ is convergent. Series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ is absolutely convergent, because $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent as the generalized harmonic series with p = 2.

interval of convergence $x \in [-1,1]$.

$$\mathbf{3.}\sum_{n=1}^{\infty}a_{n}x^{n}=\sum_{n=1}^{\infty}x^{n}n^{n}$$

The radius of convergence is

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n n^n}{(-1)^{n+1} (n+1)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(n)^n}{(n+1)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(n)^n}{(n+1)^n (n+1)} \right| = \lim_{n \to \infty} \left| \frac{1}{\left(\frac{n+1}{n}\right)^n (n+1)} \right| = 0$$

interval of convergence is x = 0 (one point).

4.
$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{(-1)^n \cdot (2x-1)^n n^n}{5}$$
.

The radius of convergence is

$$\begin{split} R &= \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^n \cdot n^n}{5}}{(-1)^{n+1} \cdot (n+1)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(n)^n}{(n+1)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(n)^n}{(n+1)^n (n+1)} \right| = \lim_{n \to \infty} \left| \frac{1}{\left(\frac{n+1}{n}\right)^n (n+1)} \right| = n, \end{split}$$

 $2x - 1 = 0 \Longrightarrow x = 0.5$

interval of convergence is x = 0.5 (one point).