
 

 

Answer on Question #54903 – Math – Calculus 

Find the radius of convergence and interval of convergence 

of the series 

1. Sum of ((-1)^n)(x^n)/((1/n)^3) with n=1 ->infinite 

2. Sum of ((-1)^n)(x^n)/(n^2) with n=1 ->infinite 

3. Sum of (n^n)(x^n) with n=1 ->infinite 

4. Sum of ((2x-1)^n)/(5(1/n)^n) with n=1 ->infinite 

Solution 
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The series converges if  −1 < 𝑥 < 1, and diverges if 𝑥 < −1 or  𝑥 > 1.  

At the endpoint 𝑥 = −1 we have  ∑ 𝑛3∞
𝑛=1 , at the endpoint 𝑥 = 1 we have  

∑ (−1)𝑛𝑛3∞
𝑛=1  . In both cases (−1)𝑛𝑛3 and 𝑛3 do not converge to zero as 𝑛 → ∞, 

hence both series diverge. 

If 𝑥 = ∓1 ⇒ ∑ 𝑎𝑛𝑥𝑛∞
𝑛=1  is not convergent. 

interval of convergence  1;1x  . 



 

 

2.
 

2
1 1

1
n n

n

n

n n

x
a x

n

 

 

 
   

The radius of convergence is 
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If 𝑥 = ∓1 ⇒ ∑ 𝑎𝑛𝑥𝑛∞
𝑛=1  is convergent. Series ∑

(−1)𝑛

𝑛2
∞
𝑛=1  is absolutely convergent, 

because ∑
1

𝑛2
∞
𝑛=1  is convergent as the generalized harmonic series with 𝑝 = 2. 

interval of convergence  1,1x  . 
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interval of convergence is 0x  (one point). 
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The radius of convergence is  
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2 1 0 0.5x x     

interval of convergence is 0.5x   (one point). 
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