Answer on Question #54902 — Math — Calculus

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
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This is an example of series Z;‘{’_lﬁ , Which is convergent if p>1. In our case p=2. Thus the series Z?{jﬂﬁ is

(- 1)(11 1)(n)

convergent and Y5 is absolutely convergent.
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Using the Ratio Test,
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Thus, the series is divergent.
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Using the Ratio Test,
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Therefore, since o < 1, the Ratio Test says that the series Y54 ;lo—n converges.
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That’s why, by the Comparison Test, the series Y.n—4 (_lnow is absolutely convergent.
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This is an example of series Zlenip , Which is convergent if p>1 and divergent if p<1

is divergent.
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Inour casep = 3 Thus, the series 2 Y,
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So, by the direct comparison test, the series Y74 CZL(TL) is divergent too.
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