## Answer on Question #54902 - Math - Calculus

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

**1.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{(n-1)(n)}}{n^2+4}$$

**2.** 
$$\sum_{n=1}^{\infty} \frac{n!}{100^n}$$

3. 
$$\sum_{n=1}^{\infty} \frac{n^{10}}{(-10)^{n+1}}$$

**4.** 
$$\sum_{n=1}^{\infty} \frac{3-\cos(n)}{\frac{2}{n^{\frac{2}{3}}-2}}$$

## Solution

1.

$$\sum_{n=1}^{\infty} \frac{(-1)^{(n-1)(n)}}{n^2+4} \le \sum_{n=1}^{\infty} \left| \frac{(-1)^{(n-1)(n)}}{n^2+4} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2+4} \le \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

This is an example of series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$ , which is convergent if p>1. In our case p=2. Thus the series  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  is convergent and  $\sum_{n=1}^{\infty} \frac{(-1)^{(n-1)(n)}}{n^2+4}$  is absolutely convergent.

2.

Using the Ratio Test,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)!}{100^{n+1}}}{\frac{n!}{100^n}} \right| = \lim_{n \to \infty} \left| \frac{n+1}{100} \right| = \infty.$$

Thus, the series is divergent.

3.

$$\sum_{n=1}^{\infty} \frac{n^{10}}{(-10)^{n+1}} \le \sum_{n=1}^{\infty} \left| \frac{n^{10}}{(-10)^{n+1}} \right| = \frac{1}{10} \sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$$

Using the Ratio Test,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)^{10}}{10^{n+1}}}{\frac{n^{10}}{10^n}} \right| = \lim_{n \to \infty} \left| \frac{\left(1 + \frac{1}{n}\right)^{10}}{10} \right| = \frac{1}{10}.$$

Therefore, since  $\frac{1}{10} < 1$ , the Ratio Test says that the series  $\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$  converges.

That's why, by the Comparison Test, the series  $\sum_{n=1}^{\infty} \frac{n^{10}}{(-10)^{n+1}}$  is absolutely convergent.

$$\sum_{n=1}^{\infty} \frac{3 - \cos(n)}{n^{\frac{2}{3}} - 2} > \sum_{n=1}^{\infty} \frac{3 - 1}{n^{\frac{2}{3}}} = 2 \sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}}.$$

This is an example of series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  , which is convergent if p>1 and divergent if p≤1

In our case  $p=\frac{2}{3}$ . Thus, the series  $2\sum_{n=1}^{\infty}\frac{1}{n^{\frac{2}{3}}}$  is divergent.

So, by the direct comparison test, the series  $\sum_{n=1}^{\infty} \frac{3-cos(n)}{n^{\frac{2}{3}}-2}$  is divergent too.