Answer on Question \#54901 - Math - Calculus

Question: Test the series for convergence or divergence
1.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln (n+4)}
$$

Solution: By the Alternating Series Test,
$\lim _{n \rightarrow \infty} \frac{1}{\ln (n+4)}=0$
and for any n the inequality $\frac{1}{\ln (n+4)}>\frac{1}{\ln ((n+1)+4)}$ holds true, because $\ln n$ is increasing.
It means that the series is convergent.
Answer: $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln (n+4)}$ is convergent
2.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{3}+2}}
$$

Solution: By the Alternating Series Test,
$\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{3}+2}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+\frac{2}{n^{2}}}}=0$
and
$\frac{n}{\sqrt{n^{3}+2}}>\frac{n+1}{\sqrt{(n+1)^{3}+2}}$,
because

$$
\begin{aligned}
& \frac{1}{\sqrt{n+\frac{2}{n^{2}}}}>\frac{1}{\sqrt{n+1+\frac{2}{(n+1)^{2}}}} \\
& \sqrt{n+1+\frac{2}{(n+1)^{2}}}>\sqrt{n+\frac{2}{n^{2}}} \\
& n+1+\frac{2}{(n+1)^{2}}>n+\frac{2}{n^{2}}
\end{aligned}
$$

$1>\frac{2}{n^{2}}-\frac{2}{(n+1)^{2}}$ holds true for $n \geq 2$.
Hence the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{3}+2}}$ converges.
Answer: $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln (n+4)}$ is convergent
3.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{2 n+3}
$$

Solution: By the Alternating Series Test,
$\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2 n+3}=\lim _{n \rightarrow \infty} \frac{1}{2 \sqrt{n}+\frac{3}{\sqrt{n}}}=0$
and

$$
\frac{\sqrt{n}}{2 n+3}>\frac{\sqrt{n+1}}{2(n+1)+3}
$$

Solve the last inequality. Since both sides are positive, squared them and consider ratio

$$
\frac{n}{4 n^{2}+6 n+9}: \frac{n+1}{4 n^{2}+10 n+25}=\frac{4 n^{3}+10 n^{2}+25 n}{4 n^{3}+6 n^{2}+9 n+4 n^{2}+6 n+9}=\frac{4 n^{3}+10 n^{2}+15 n+10 n}{4 n^{3}+10 n^{2}+15 n+9}>1
$$

for any n because $10 n>9$
Inequality is valid and the series is convergent.
Answer: $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{2 n+3}$ is convergent
4.

$$
\sum_{n=1}^{\infty} \frac{n \cos n \pi}{2^{n}}
$$

Solution: Since $\cos n \pi=(-1)^{n}$ we have series
$\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2^{n}}$
Using the Alternating Series Test obtain
$\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0$ since by the l'Hospital's rule $\lim _{x \rightarrow \infty} \frac{x}{2^{x}}=\lim _{x \rightarrow \infty} \frac{1}{2^{x} \ln 2}=0$
and $\frac{n}{2^{n}}>\frac{n+1}{2^{n+1}}$ for $n>1$, because
$2^{n+1} n>2^{n} n+2^{n}$
$2^{n} n>2^{n}$
$n>1$.

The series $\sum_{n=1}^{\infty} \frac{n \cos n \pi}{2^{n}}$ converges.
Answer: $\sum_{n=1}^{\infty} \frac{n \cos n \pi}{2^{n}}$ is convergent.

