Answer on Question #54901 — Math — Calculus

Question: Test the series for convergence or divergence
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Solution: By the Alternating Series Test,
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and for any n the inequality holds true, because In n is increasing.

It means that the series is convergent.
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Hence the series Oo_ converges.
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Solution: By the Alternating Series Test,
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Solve the last inequality. Since both sides are positive, squared them and consider ratio

n . n+1 B 4n3 + 10n? + 25n _4n3+10n2+15n+10n
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for any n because 10n > 9

Inequality is valid and the series is convergent.
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Answer: )., is convergent
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Solution: Since cosnm = (—1)"™ we have series
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Using the Alternating Series Test obtain
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The series Yp—1 —m _ converges.
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v is convergent.
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