Answer on Question \#54898 - Math - Calculus

1. Calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?

Sum of $\left((-1)^{\wedge}(n-1)\right) /(n!)$ with $n=1->$ infinite

Solution

First eight partial sums are equal to $1 ., 0.5,0.6667,0.625,0.6333,0.6319,0.6321,0.6321$. It appears that the series is convergent to a number close to 0.63 .
2. Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
a) $4+3+9 / 4+27 / 16+.$. .

Solution

The geometric series can be transformed as follows:

$$
4+3+\frac{9}{4}+\frac{27}{16}+\cdots=4 \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}=4 \cdot \frac{1}{1-3 / 4}=16
$$

The series converges, its sum is 16 .
b) Sum of $(1) /\left((\operatorname{sqrt}(2))^{\wedge} n\right)$ with $n=0$->infinite

Solution

The geometric series can be transformed as follows:

$$
\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^{n}}=\frac{1}{1-1 / \sqrt{2}}=\frac{\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}=\frac{2+\sqrt{2}}{2-1}=2+\sqrt{2}
$$

The series converges, its sum is $2+\sqrt{2} \approx 3.41$.
c) Sum of $\left(e^{\wedge} n\right) /\left(3^{\wedge}(n-1)\right)$ with $n=1$->infinite

Solution

The geometric series can be transformed as follows:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{e^{n}}{3^{n-1}}=3 \sum_{n=1}^{\infty}\left(\frac{e}{3}\right)^{n}=3\left(\sum_{n=0}^{\infty}\left(\frac{e}{3}\right)^{n}-1\right)=3\left(\frac{1}{1-e / 3}-1\right)=3\left(\frac{3}{3-e}-1\right) \\
=3 \cdot \frac{3-3+e}{3-e}=\frac{3 e}{3-e}
\end{gathered}
$$

The series converges, its sum is $\frac{3 e}{3-e} \approx 28.95$.

