Answer on Question \#54829 - Math - Calculus

What is the largest rectangular area one can enclose with 38 inches of string?

b

Solution

Let a and b be the lengths of sides of a rectangular.
The perimeter of the rectangular equals $2 a+2 b=38$, hence $b=19-a$.
Area of the rectangle is given by

$$
\begin{equation*}
S=a b=a(19-a)=19 a-a^{2} \tag{1}
\end{equation*}
$$

where $S=S(a)$ is the function of a.
To find the maximum of area, we need to solve the equation

$$
S^{\prime}=0
$$

where S^{\prime} is the derivative of S with respect to a.

$$
S^{\prime}=\left(19 a-a^{2}\right)^{\prime}=19-2 a
$$

Solution of $19-2 a=0$ is $a=\frac{19}{2}=9.5$
Substituting $a=9.5$ into expression (1) gives
$S=a(19-a)=9.5 \cdot(19-9.5)=9.5 \cdot 9.5=90.25\left(\mathrm{in}^{2}\right)$.
Answer: $90.25 \mathrm{in}^{2}$.

