1. Solve the following quadratic equation for the indicated variable. (Enter your answers as a comma-separated list.)

$$y^2 - 8y = x^2 - 16$$

for x

x =

2. Solve the following quadratic equation for the indicated variable. (Enter your answers as a comma-separated list.)

$$y^2 - 5y = 5x$$

for y

y =

Solution

1. Transform equation

$$y^{2} - 8y = x^{2} - 16$$
 (1)
 $y^{2} - 8y + 16 = x^{2}$
 $(y - 4)^{2} = x^{2}.$

Hence

$$x = y - 4$$
 or $x = 4 - y$. (2)

Both solutions (2) exist for any values y.

The quadratic equation (1) has two solutions (2) if $y \neq 4$ and it has one solution x = 0 if y = 4.

2. Transform equation

$$y^2 - 5y = 5x \rightarrow$$

 $y^2 - 5y - 5x = 0.$ (3)

We find the discriminant $D = 25 + 4 \times 1 \times 5x = 25 + 20x$.

Solutions of the equation (3) will be $y_1 = \frac{5 - \sqrt{25 + 20x}}{2}$, $y_2 = \frac{5 + \sqrt{25 + 20x}}{2}$.

Inequality 25 + 20x > 0 is equivalent to $x > -\frac{25}{20}$, x > -1.25, that is, $x \in (-1.25; +\infty)$. Inequality 25 + 20x < 0 is equivalent to $x < -\frac{25}{20}$, x < -1.25, that is, $x \in (-\infty; -1.25)$. As a result, equation (3) has two solutions $y_1 = \frac{5-\sqrt{25+20x}}{2}$, $y_2 = \frac{5+\sqrt{25+20x}}{2}$ if x > -1.25. Equation (3) has one solution $y = \frac{5}{2}$ if x = -1.25.

Equation (3) has no solutions for real y if x < -1.25.

Answer: 1) two solutions $x_1 = y - 4$, $x_2 = 4 - y$ if $y \neq 4$; one solution x = 0 if y = 4.

> 2) two solutions $y_1 = \frac{5-\sqrt{25+20x}}{2}$, $y_2 = \frac{5+\sqrt{25+20x}}{2}$ if x > -1.25; one solution $y = \frac{5}{2}$ if x = -1.25; no solutions y if x < -1.25.