Answer on Question #54825 - Math - Calculus

1. (An Intermediate Algebra review exercise) Use polynomial long division to perform the indicated division. Write the polynomial in the form:

$$p(x) = d(x)q(x) + r(x).$$

$$(9x^4 - 3x^3 + 2x^2 - 9) \div (x^2 + 4)$$

$$p(x) =$$

Solution.

Answer: $p(x) = (9x^2 - 3x - 34)(x^2 + 4) + (12x + 127).$

2. Use polynomial long division to perform the indicated division. Write the polynomial in the form:

$$p(x) = d(x)q(x) + r(x).$$

$$(-x^5 + 8x^3 - x) \div (x^3 - x^2 + 8)$$

$$p(x) =$$

Solution.

Answer: $p(x) = (x^3 - x^2 + 8)(-x^2 - x + 7) + (15x^2 + 7x - 56).$

3. For the polynomial given below, you are given one of its zeros. Use the techniques in this section to find the rest of the real zeros. (Enter your answers as a comma-separated list.)

$$x^3 - 6x^2 + 11x - 6, \ c = 1$$
$$x =$$

Solution.

4. For the polynomial given below, you are given one of its zeros. Use the techniques in this section to find the rest of the real zeros. (Enter your answers as a comma-separated list.)

$$x^3 - 12x^2 + 48x - 64, \ c = 4$$
$$x =$$

Solution.

$$x^{3} - 12x^{2} + 48x - 64$$

$$x^{3} - 4x^{2}$$

$$-8x^{2} + 48x - 64$$

$$-8x^{2} + 32x$$

$$16x - 64$$

$$16x - 64$$

$$0$$

$$x^{3} - 12x^{2} + 48x - 64 = (x - 4)(x^{2} - 8x + 16) = (x - 4)(x - 4)(x - 4)$$

Answer: $x_1 = 4$, $x_2 = 4$, $x_3 = 4$.