Answer on Question \#54790 - Math - Abstract Algebra

1. If R (the set of real number) be the universal set and sets $V=\{y \in R: 0<y \leq 3\}$ and $W=\{y \in R: 2 \leq y$ $<4\}$ What is $V \backslash W$?
2. For sets A and B, if A and B are subset of Z (the set of Integer) which of the following relations between the two subset is true?
(a) $A \cup B=A$
(b) $(A \backslash B) \cap(B \backslash A)=\varnothing$
(c) $(A \backslash B) \cap(B \backslash A)=Z$
(d) $(A \backslash B) \cup(B \backslash A)=\varnothing$
3. Which of the following pair of functions has $f \circ g=g \circ f$
(a) $f(y)=y-3$ and $g(y)=y \cdot \sqrt{3}$
(b) $f(y)=y^{\{5\}}$ and $g(y)=3 y+7$
(c) $f(y)=y-2$ and $g(y)=y+7$
(d) $f(y)=y-2$ and $g(y)=3 y+7$

Solution

1. $V \backslash W=\{y \in R: 0<y<2\}$ is all elements from V, which do not belong to W.
2. $A \cup B$ means that we have objects from A or B (and they don't equal each other). That's why $A \cup B$ is not always equal to A .
$(A \backslash B) \cup(B \backslash A)$. We don't know whether $A \subset B$ or $B \subset A$. There are at least two elements: one from A, and the other from B. That's why $(A \backslash B) \cup(B \backslash A)$ is not empty.
$(A \backslash B) \cap(B \backslash A)$
We can see from the diagram that this intersection is empty.
It is not equal to Z.
The true relation is (b).
3. $f \circ g=f(y \cdot \sqrt{3})=y \sqrt{3}-3$ and $g \circ f=g(y-3)=(y-3) \sqrt{3}=y \sqrt{3}-3 \sqrt{3} \Rightarrow$ $f \circ g \neq g \circ f$
$f \circ g=f(3 y+7)=(3 y+7)^{\{5\}}$ and $g \circ f=g\left(y^{\{5\}}\right)=3 y^{\{5\}}+7 \Rightarrow f \circ g \neq g \circ f$
$f \circ g=f(y+7)=y+7-2=y+5$ and $g \circ f=g(y-2)=y-2+7=y+5 \Rightarrow$

$$
f \circ g=g \circ f
$$

$$
\begin{aligned}
& f \circ g=f(3 y+7)=3 y+7-2=3 y+5 \text { and } \\
& g \circ f=g(y-2)=3(y-2)+7=3 y+1 \Rightarrow f \circ g \neq g \circ f
\end{aligned}
$$

Answer: 1. $\mathrm{V} \backslash \mathrm{W}=\{\mathrm{y} \in \mathrm{R}: 0<\mathrm{y}<2\}$
2. (b)
3. (c)

