Answer on Question\#54769 -Math- Calculus

For each of the following functions, find the first three derivatives (without simplifying) then generalize the pattern to find a formula for the nth derivative of f. Evaluate the nth derivative for the value of x given.
a) $f(x)=x^{\wedge}(2 / 3), x=1$
b) $f(x)=\ln (1+2 x), x=0$

Solution.

Let us find the derivative using the basic rules of differentiation.
a) The derivative of the function of a function $h(x)=f(g(x))$ with respect to x is $h^{\prime}(x)=$ $f^{\prime}(x) \times g^{\prime}(x)$. Using the table of derivatives we will find a derivative power of x .
$\left.\left(x^{n}\right)^{\prime}=n \times x^{n-1}\right)$. We get three derivatives
$f^{\prime}(x)=\frac{2}{3} x^{\frac{2}{3}-1}=\frac{2}{3} x^{-\frac{1}{3}} ;$
$f^{\prime \prime}(x)=\frac{2}{3}\left(-\frac{2}{3}\right) x^{-\frac{1}{3}-1}=\frac{2}{3}\left(-\frac{1}{3}\right) x^{-\frac{4}{3}} ;$
$f^{\prime \prime \prime}(x)=\frac{2}{3}\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right) x^{-\frac{4}{3}-1}=\frac{2}{3}\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right) x^{-\frac{7}{3}} ;$
Examining generalize the pattern we get
$f^{n}(x)=\frac{2}{3}\left(\frac{2}{3}-1\right) \ldots\left(\frac{2}{3}-(n-1)\right) x^{\frac{2}{3}-n}$.
Value of the nth derivative function f for $x=1$ is equal
$f^{n}(1)=\frac{2}{3}\left(\frac{2}{3}-1\right) \ldots\left(\frac{2}{3}-(n-1)\right)$.
b) The derivative of the function of a function $h(x)=f(g(x))$ with respect to x is $h^{\prime}(x)=$ $f^{\prime}(x) \times g^{\prime}(x)$. Using the table of derivatives we will find derivative logarithmic functions and derivative power of $\mathrm{x}(\ln (x))^{\prime}=\frac{1}{x}\left(x^{n}\right)^{\prime}=n \times x^{n-1}$.
$f^{\prime}(x)=\frac{1}{1+2 x}(1+2 x)^{\prime}=\frac{2}{1+2 x} ;$
$f^{\prime \prime}(x)=2\left((1+2 x)^{-1}\right)^{\prime}=2\left(-\frac{2}{(1+2 x)^{2}}\right)(1+2 x)^{\prime}=-\frac{4}{(1+2 x)^{2}} ;$
$f^{\prime \prime \prime}(x)=-4\left((1+2 x)^{-2}\right)^{\prime}=-4\left(-\frac{2}{(1+2 x)^{3}}\right)(1+2 x)^{\prime}=\frac{16}{(1+2 x)^{3}} ;$
Examining generalise the pattern we get
$f^{n}(x)=\frac{(-1)^{n+1} \times 2^{n} \times(n-1)!}{(1+2 x)^{n}}$.
Value of the nth derivative function f for $x=0$ is equal

$$
f^{n}(0)=(-1)^{n+1} \times 2^{n} \times(n-1)!.
$$

Answer: a) $f^{\prime}(x)=\frac{2}{3} x^{-\frac{1}{3}} ; f^{\prime \prime}(x)=\frac{2}{3}\left(-\frac{1}{3}\right) x^{-\frac{4}{3}} ; f^{\prime \prime \prime}(x)=\frac{2}{3}\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right) x^{-\frac{7}{3}} ; f^{n}(x)=$ $\frac{2}{3}\left(\frac{2}{3}-1\right) \ldots\left(\frac{2}{3}-(n-1)\right) x^{\frac{2}{3}-n} ; f^{n}(1)=\frac{2}{3}\left(\frac{2}{3}-1\right) \ldots\left(\frac{2}{3}-(n-1)\right)$. b) $f^{\prime}(x)=\frac{2}{1+2 x^{\prime}} ;$ $f^{\prime \prime}(x)=-\frac{4}{(1+2 x)^{2}} ; f^{\prime \prime \prime}(x)=\frac{16}{(1+2 x)^{3}} ; f^{n}(x)=\frac{(-1)^{n+1} \times 2^{n} \times(n-1)!}{(1+2 x)^{n}} ; \quad f^{n}(0)=(-1)^{n+1} \times$ $2^{n} \times(n-1)!$.

www.AssignmentExpert.com

