Answer on Question #54768 - Math — Calculus

Task. Determine the convergence or divergence of the sequence of partial sums whose n-th term is
given by:
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Solution.
a) Find the sum of n-th term
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Then we use a necessary condition for convergence of the sum. We check next:
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Answer. The sequence of partial sums with this n-th term is divergence.

b) The first step is to check the necessary condition.
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We get this result, because exponent is growing faster than the power function.
U, is a positive terms our series. We can use the d'Alembert's ratio test.

The usual form of the test makes use of the limit
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The ratio test states that:
if L <1 then the series converges;

if L > 1 then the series does not converge;

if L =1 or the limit fails to exist, then the test is inconclusive, because there exist both
convergent and divergent series that satisfy this case.
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We have that é < 1. Looking at the d'Alembert's ratio test we get the answer.

Answer. The sequence of partial sums with this n-th term is convergence.
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