Answer on Question \#54768 - Math - Calculus
Task. Determine the convergence or divergence of the sequence of partial sums whose n-th term is given by:
a) $u_{n}=\sum_{k=1}^{n}\left(\frac{1}{2 k+1}-\frac{1}{2 k+3}\right)$
b) $u_{n}=n^{2} e^{-n}$

Solution.

a) Find the sum of n-th term

$$
\begin{aligned}
u_{n}=\sum_{k=1}^{n}\left(\frac{1}{2 k+1}-\frac{1}{2 k+3}\right)=\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right) & +\left(\frac{1}{9}-\frac{1}{11}\right)+\cdots+\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)+\left(\frac{1}{2 n+1}-\frac{1}{2 n+3}\right)= \\
& =\frac{1}{3}-\frac{1}{2 n+3}
\end{aligned}
$$

Then we use a necessary condition for convergence of the sum. We check next:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} u_{n}=0 \\
\lim _{n \rightarrow \infty}\left(\frac{1}{3}-\frac{1}{2 n+3}\right)=\frac{1}{3} \neq 0
\end{gathered}
$$

Answer. The sequence of partial sums with this n-th term is divergence.
b) The first step is to check the necessary condition.

$$
\begin{gathered}
\lim _{n \rightarrow \infty} u_{n}=0 \\
\lim _{n \rightarrow \infty} n^{2} e^{-n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}}=0
\end{gathered}
$$

We get this result, because exponent is growing faster than the power function. u_{n} is a positive terms our series. We can use the d'Alembert's ratio test.

The usual form of the test makes use of the limit

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=L
$$

The ratio test states that:
if $L<1$ then the series converges;
if $L>1$ then the series does not converge;
if $L=1$ or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{e^{n+1}} \times \frac{e^{n}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{e \cdot n^{2}}=\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{e \cdot n^{2}}+\frac{2 n}{e \cdot n^{2}}+\frac{1}{e \cdot n^{2}}\right)=\frac{1}{e}+0+0=\frac{1}{e}
$$

We have that $\frac{1}{e}<1$. Looking at the d'Alembert's ratio test we get the answer.
Answer. The sequence of partial sums with this n-th term is convergence.

