Answer on Question \#54705, Math Calculus

Draw diagrams to show two vectors a and b, and the vectors $a+b$ and $a-b$.
When is the magnitude of $a+b$ less than that of $a-b$?

When is the magnitude of $a+b$ equal to that of $a-b$?
When is $|\mathrm{a}+\mathrm{b}|=|\mathrm{a}|+|\mathrm{b}|$?

Solution

Fig. $1 \vec{a}+\vec{b}$

Fig. $2 \vec{a}-\vec{b}$

See Fig.1:

$$
\begin{equation*}
|\vec{a}+\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}}=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot \vec{b} \mid \cos (\theta)} \tag{1}
\end{equation*}
$$

where θ is the angle between vectors \vec{a} and $+\vec{b}$.

See Fig.2:

$$
\begin{equation*}
|\vec{a}-\vec{b}|=\sqrt{|\vec{a}|^{2}+|-\vec{b}|^{2}-2 \vec{a} \cdot(-\vec{b})}=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \cos (\pi-\theta)} \tag{2}
\end{equation*}
$$

$|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}| \Rightarrow|\vec{a}+\vec{b}|^{2}<|\vec{a}-\vec{b}|^{2} \Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \cos (\theta)<|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \cos (\pi-\theta) \Rightarrow$ $2|\vec{a}| \cdot|\vec{b}| \cos (\theta)>2|\vec{a}| \cdot|\vec{b}| \cos (\pi-\theta) \Rightarrow \cos (\theta)>\cos (\pi-\theta) \Rightarrow \cos (\theta)>-\cos (\theta) \Rightarrow 2 \cos (\theta)>0 \Rightarrow$ $\cos (\theta)>0 \Rightarrow \theta \in[0, \pi / 2)$

The magnitude of $\vec{a}+\vec{b}$ less than that of $\vec{a}-\vec{b}$ if $\theta \in[0, \pi / 2)$.
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \Rightarrow|\vec{a}+\vec{b}|^{2}=|\vec{a}-\vec{b}|^{2} \Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \cos (\theta)=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \cos (\pi-\theta) \Rightarrow$ $2|\vec{a}| \cdot|\vec{b}| \cos (\theta)=2|\vec{a}| \cdot|\vec{b}| \cos (\pi-\theta) \Rightarrow \cos (\theta)=\cos (\pi-\theta) \Rightarrow \cos (\theta)=-\cos (\theta) \Rightarrow 2 \cos (\theta)=0 \Rightarrow$ $\cos (\theta)=0 \Rightarrow \theta=\pi / 2$

The magnitude of $\vec{a}+\vec{b}$ equal to that of $\vec{a}-\vec{b}$ if $\theta=\pi / 2$
$|\vec{a}+\vec{b}|^{2}=(|\vec{a}|+|\vec{b}|)^{2} \Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \cos (\theta)=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}| \cdot|\vec{b}| \Rightarrow 2|\vec{a}| \cdot|\vec{b}| \cos (\theta)=$ $=2|\vec{a}| \cdot|\vec{b}| \Rightarrow \cos (\theta)=1 \Rightarrow \theta=0$
$|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$ if vectors \vec{a} and \vec{b} are parallel.

