Question:

If $x=3 t \boldsymbol{\omega}-1, y=t \boldsymbol{v}-t$, then $d y / d x$ is equal to...

Answer:

Definition of parametric differentiation: if $x=x(t)$ and $y=y(t)$ then

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \text { provided } \frac{d x}{d t} \neq 0 . \tag{1}
\end{equation*}
$$

1) If according to the statement of the problem we have

$$
\left\{\begin{array}{c}
x(t)=3 t^{-1} \tag{2}\\
y(t)=t^{-t}
\end{array}\right.
$$

then using (1) we obtain

$$
\begin{gather*}
\frac{d x}{d t}=3 \cdot(-1) t^{-2}=-\frac{3}{t^{2}} \\
\ln (y)=-t \ln (t) \Rightarrow \frac{1}{y} \frac{d y}{d t}=-\ln (t)-\frac{t}{t} \Rightarrow \frac{d y}{d t}=-y(\ln (t)+1)=-t^{-t}(\ln (t)+1) ; \\
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-t^{-t}(\ln (t)+1)}{-\frac{3}{t^{2}}}=\frac{1}{3} t^{2-t}(\ln (t)+1) ; \\
\frac{d y}{d x}=\frac{1}{3} t^{2-t}(\ln (t)+1) . \tag{3}
\end{gather*}
$$

2) If according to the statement of the problem we have

$$
\text { 3) }\left\{\begin{array}{c}
x(t)=3 t^{m}-1, \tag{4}\\
y(t)=t^{n}-t,
\end{array}\right.
$$

then we receive

$$
\begin{align*}
& \frac{d x}{d t}=3 m t^{m-1} ; \frac{d y}{d t}=n t^{n-1}-1 ; \\
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{n t^{n-1}-1}{3 m t^{m-1}} . \tag{5}
\end{align*}
$$

