Answer on Question \#54278 - Math - Calculus

Question

Each side of a square is increasing at a rate of $7 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the square increasing when the area of the square is $64 \mathrm{~cm}^{2}$?

Solution

Let $\mathrm{A}=\mathrm{Area} ; \mathrm{a}=$ side of the square.

It is known that $A=a^{2}$. If the area of the square is $A=64 \mathrm{~cm}^{2}$, then the side of the square is $\mathrm{a}=8 \mathrm{~cm}$.

Since A is also a function of time:
$A(t)=a^{2}(t)$,
so the rate of change in $A(t)$ with respect to time t is the following:
$\frac{d A}{d t}=\frac{d A}{d a} \cdot \frac{d a}{d t}$ due to the chain rule.

Differentiating,
$\frac{d A}{d t}=\frac{d A}{d a} \cdot 7=2 \mathrm{a} \mathrm{cm} \cdot 7 \mathrm{~cm} / \mathrm{s}=14 \mathrm{a} \mathrm{cm}^{2} / \mathrm{s}$.
Therefore, the rate at what the area is increasing, when $a=8$, is
$\left.\frac{d A}{d t}\right|_{a=8 \mathrm{~cm}}=(14 \mathrm{~cm} / \mathrm{s})(8 \mathrm{~cm})=\mathbf{1 1 2} \mathrm{cm}^{2} / \mathrm{s}$.
Answer: $14 \mathrm{a} \frac{\mathrm{cm}^{2}}{s}=112 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$.

