Answer on Question \#54161 - Math - Differential Equations

A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per litre of water enters the tank at a rate of $25 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after half an hour?

Solution

Let $y(t)$ be the amount of salt (in kilograms) after t minutes. We are given that $y(0)=20$ and we want to find $y(30)$. We do this by finding a differential equation satisfied by $y(t)$. Note that $\frac{d y}{d t}$ is the rate of change of the amount of salt, so

$$
\frac{d y}{d t}=(\text { rate in })-(\text { rate out })
$$

where (rate in) is the rate at which salt enters the tank and (rate out) is the rate at which salt leaves the tank. We have

$$
(\text { rate in })=\left(0.03 \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(25 \frac{\mathrm{~L}}{\mathrm{~min}}\right)=0.75 \frac{\mathrm{~kg}}{\mathrm{~min}}
$$

The tank always contains 5000 L of liquid, so the concentration at time t is $\frac{y(t)}{5000}$ (measured in kilograms per liter). Since the brine flows out at a rate of $25 \frac{\mathrm{~L}}{\mathrm{~min}}$, we have

$$
(\text { rate out })=\left(\frac{y(t)}{5000} \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(25 \frac{\mathrm{~L}}{\min }\right)=\frac{y(t)}{200} \frac{\mathrm{~kg}}{\min }
$$

Thus, we get

$$
\frac{d y}{d t}=0.75-\frac{y(t)}{200}=\frac{150-y(t)}{200}
$$

Solving this separable differential equation, we obtain

$$
\begin{aligned}
\int \frac{d y}{150-y} & =\int \frac{d t}{200} \\
-\ln |150-y| & =\frac{t}{200}+C
\end{aligned}
$$

Since $y(0)=20$, we have $-\ln |130|=C$, so

$$
-\ln |150-y|=\frac{t}{200}-\ln |130|
$$

Therefore

$$
|150-y|=130 e^{-\frac{t}{200}}
$$

Since $y(t)$ is continuous and $y(0)=20$ and the right side is never 0 , we deduce that $150-y$ is always positive. Thus $|150-y|=150-y$ and so

$$
y(t)=150-130 e^{-\frac{t}{200}}
$$

The amount of salt after 30 min is

$$
y(30)=150-130 e^{-\frac{30}{200}} \approx 38.1 \mathrm{~kg} .
$$

Answer: $\mathbf{3 8 . 1} \mathbf{~ k g}$.

