Answer on Question \#54160 - Math - Calculus

Solve the initial value problems:
a) $y^{\prime}=(x y \sin (x)) /(y+1), y(0)=1$
b) $t(d u / d t)=t^{\wedge} 2+3 u, t>0, u(2)=4$

Solution

a) $y^{\prime}=\frac{x y \sin x}{y+1}, y(0)=1$.

$$
\begin{align*}
& \frac{y+1}{y} d y=x \sin x d x \rightarrow \int \frac{y+1}{y} d y=\int x \sin x d x \\
& \rightarrow \int\left(1+\frac{1}{y}\right) d y=-\int x d \cos (x) \rightarrow \\
& \rightarrow y+\ln y=-\left(x \cos (x)-\int \cos (x) d x\right)+C \rightarrow \\
& \rightarrow y+\ln y=-x \cos x+\sin x+C \tag{1}\\
& y(0)=1 \tag{2}
\end{align*}
$$

Equalities (1) and (2) give the following expression:

$$
\begin{align*}
& y(0)+\ln y(0)=-0 \cdot \cos (0)+\sin (0)+C \rightarrow \\
& 1=C \tag{3}
\end{align*}
$$

Substitute (3) for C in (1) and obtain the answer.
Solution to the initial value problem is

$$
y+\ln y=-x \cos x+\sin x+1
$$

b) $t \frac{d u}{d t}=t^{2}+3 u, t>0, u(2)=4$.

Rewrite $t \frac{d u}{d t}=t^{2}+3 u$ as
$\frac{d u}{d t}-\frac{3}{t} u=t$
$\frac{d u}{d t}+P(t) u=f(t)$ where $P(t)=-\frac{3}{t}, f(t)=t$
Integrating factor is the following:

$$
\begin{equation*}
e^{\int P(t) d t}=e^{-3 \ln t}=t^{-3} \tag{5}
\end{equation*}
$$

Multiply (4) by (5) :

$$
\begin{gathered}
\frac{1}{t^{3}} \frac{d u}{d t}-\frac{3}{t^{4}} u=\frac{t}{t^{3}} \\
\frac{d}{d t}\left(\frac{u}{t^{3}}\right)=\frac{1}{t^{2}}
\end{gathered}
$$

Integrate both sides with respect to t :

$$
\frac{u}{t^{3}}=\int \frac{d t}{t^{2}} \rightarrow \frac{u}{t^{3}}=-\frac{1}{t}+C \rightarrow
$$

Multiply both sides by t^{3} :

$$
\begin{equation*}
u=C t^{3}-t^{2} \tag{6}
\end{equation*}
$$

It follows from the initial condition $u(2)=4$ and (6) that

$$
\begin{align*}
& u(2)=4 \rightarrow 4=8 C-4 \rightarrow \\
& C=1 \tag{7}
\end{align*}
$$

Substitute (7) for C in (6) and obtain the answer.
Solution to the initial value problem is
$u=t^{3}-t^{2}$.

