Answer on Question\# 53949- Mathematics - Calculus

Question:

Graph each pair of parametric equations: $x=2 t-1, y=t 2+5,-4 \leq t \leq 4$

Answer:

Definition:

A curve in the $x y$-plane is said to be parameterized if the set of coordinates on the curve, (x, y), are represented as functions of a variable t. Namely,

$$
\begin{equation*}
x=f(t), \quad y=g(t), \quad t \in D, \tag{1}
\end{equation*}
$$

where D is a set of real numbers. The variable t is called a parameter and the relations between x, y and t are called parametric equations. The set D is called the domain of f and g and it is the set of values t takes.

According to the problem statement we have the following pair of parametric equations:

$$
\left\{\begin{array}{c}
x=f(t)=2 t-1 \tag{2}\\
y=g(t)=t^{2}+5 \\
-4 \leq t \leq 4
\end{array}\right.
$$

There are several techniques we use to sketch a curve generated by a pair of parametric equations (2):

1) the evaluation of $f(t)$ and $g(t)$ for several values of t and plotting the points $(f(t), g(t))$ in the $x y$ plane;
2) the elimination of the parameter t to find the explicit equation of y as a function of x.
3) To plot the graph of the required curve we use a table of values with values of t from -4 to 4 :

t	$y=f(t)=2 t-1$	$y=g(t)=t^{2}+5$	(x, y)
-4	-9	21	$(-9,21)$
-3	-7	14	$(-7,14)$
-2	-5	9	$(-5,9)$
-1	-3	6	$(-3,6)$
0	-1	5	$(-1,5)$
1	1	6	$(1,6)$
2	3	9	$(3,9)$
3	5	14	$(5,14)$
4	7	21	$(7,21)$

Let's plot the points that are labeled as (x, y)-coordinates and connect them on the graph by the smooth curve (fig.1). Note that the orientation of a parameterized curve is the direction determined by increasing values of the parameter. In our case, the direction of t increasing is from left to right.

Fig. 1
2) To plot the graph of the required curve we eliminate the parameter t from the equations (2).

Since $x=2 t-1$, then the solution for t in terms of x is

$$
\begin{equation*}
t=\frac{x+1}{2} \tag{3}
\end{equation*}
$$

Substituting (3) into the the equation for y to eliminate t, we get

$$
\begin{equation*}
y(x)=\frac{(x+1)^{2}}{4}+5 \tag{4}
\end{equation*}
$$

It is easy to see that the required curve is a parabola. The vertex of the parabola (4) is at the point $A(-1,5)$, and the straight line $x=-1$ is the axis of its symmetry (fig.2).

Fig. 2

Thus, each of the presented techniques yields to the same result.

