Answer on Question \#53939 - Math - Calculus

Question. Determine if the graph is symmetric about the x-axis, the y-axis, or the origin.
$r=3 \cos 5 \theta$.
Solution. $\cos 5 \theta=\cos 3 \theta \cos 2 \theta-\sin 3 \theta \sin 2 \theta=\left(2(\cos \theta)^{2}-1\right)\left(4(\cos \theta)^{3}-3 \cos \theta\right)-$ $-2 \sin \theta \cos \theta\left(3 \sin \theta-4(\sin \theta)^{3}\right)=8(\cos \theta)^{5}-10(\cos \theta)^{3}+3 \cos \theta-$

$$
-\left(6(\sin \theta)^{2} \cos \theta-8(\sin \theta)^{4} \cos \theta\right)=
$$

$=8(\cos \theta)^{5}+8(\sin \theta)^{4} \cos \theta-10(\cos \theta)^{3}-6(\sin \theta)^{2} \cos \theta+3 \cos \theta$. Using the fact that $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta \\ r=\sqrt{x^{2}+y^{2}}\end{array} \Rightarrow\left\{\begin{array}{l}r=\sqrt{x^{2}+y^{2}} \\ \cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \\ \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}\end{array}\right.\right.$ we can rewrite the original equation in the next form:
$\sqrt{x^{2}+y^{2}}=3\left[\frac{8 x^{5}}{\left(x^{2}+y^{2}\right)^{5 / 2}}+\frac{8 y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \cdot \frac{x}{\sqrt{x^{2}+y^{2}}}-\frac{10 x^{3}}{\left(x^{2}+y^{2}\right)^{3 / 2}}-\frac{6 y^{2}}{x^{2}+y^{2}} \cdot \frac{x}{\sqrt{x^{2}+y^{2}}}+\frac{3 x}{\sqrt{x^{2}+y^{2}}}\right]$ (*).
It follows from the last equation that if the point $\left(x_{0} ; y_{0}\right)$ belongs to the graph, then the point ($x_{0} ;-y_{0}$) also belongs to the graph. So the graph is symmetric about the x -axis.

The point $(3 ; 0)$ belongs to the graph, but the point $(-3 ; 0)$ does not belong to the graph, so the graph is not symmetric about the origin.

Let point $\left(x_{0} ; y_{0}\right)$ belong to the graph. We check whether point $\left(-x_{0} ; y_{0}\right)$ belongs to the graph. We have
$\sqrt{x_{0}^{2}+y_{0}^{2}}=3\left[-\frac{8 x_{0}^{5}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{5 / 2}}-\frac{8 y_{0}^{4}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{2}} \cdot \frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}+\frac{10 x_{0}^{3}}{\left(x_{0}^{2}+y_{0}^{2}\right)^{3 / 2}}+\frac{6 y^{2}}{x_{0}^{2}+y_{0}^{2}} \cdot \frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}-\frac{3 x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}\right]$. We did not obtain the equality (${ }^{*}$), therefore generally speaking, the last relation is false. It follows from this that the graph is not symmetric about the y-axis.

Answer. The graph is symmetric about the x-axis but is not symmetric about the y-axis and about the origin.

