Answer on Question \#53933 - Math - Analytic Geometry

Question

Find the center, vertices, and foci of the ellipse with equation x squared divided by 81 plus y squared divided by 225 equals 1 .

Solution

Definition. The ellipse equation has the form

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . \tag{1}
\end{equation*}
$$

If $b>a$, then b is the semi-major axis and a is the semi-minor axis of the ellipse. The points $A_{1}(a, 0)$,
$A_{2}(-a, 0)$ and $B_{1}(0, b), B_{2}(0,-b)$ are the ellipse vertices. The points $F_{1}(0, c)$ and $F_{2}(0,-c)$ are the ellipse foci, and $\left|F_{1} F_{2}\right|=2 c$ is the distance between them. The ellipse parameters a, b and c are related by

$$
\begin{equation*}
a^{2}=b^{2}-c^{2} \tag{2}
\end{equation*}
$$

If the ellipse is described by the equation (1), then it is centered at the origin (has center at the point $C(0,0)$).

According to the problem condition, the ellipse equation is

$$
\begin{equation*}
\frac{x^{2}}{81}+\frac{y^{2}}{225}=1 . \tag{3}
\end{equation*}
$$

Let's rewrite (3) in the form (1):

$$
\begin{equation*}
\frac{x^{2}}{9^{2}}+\frac{y^{2}}{15^{2}}=1 . \tag{3a}
\end{equation*}
$$

As we see from (3a), $a=9$ and $b=15$. Using (2) we obtain for the parameter c :

$$
\begin{equation*}
c^{2}=b^{2}-a^{2}=225-81=144 \Rightarrow c=12 . \tag{4}
\end{equation*}
$$

Hence, using the definition of the ellipse and (3), we find

1) the point $C(0,0)$ is the center of the ellipse (3);
2) the points $A_{1}(9,0), A_{2}(-9,0)$ and $B_{1}(0,15), B_{2}(0,-15)$ are the vertices of the ellipse (3);
3) the points $F_{1}(0,12)$ and $F_{2}(0,-12)$ are the foci of the ellipse (3).

The sketch of the ellipse (3) is shown in Fig. 1.

Fig. 1

