Answer on Question #53904 – Math – Algebra

In the binomial expansion of $(p + qx)^r$ where 0 the constant $is 16 and the coefficients of the terms in <math>x^2$ and x^3 are equal. Find the values of the integers p, q and r.

Solution

Constant: $p^r = 16$;

The coefficient of the term in x^2 : $C(r,2)q^2p^{r-2} = \frac{r(r-1)}{2}q^2p^{r-2}$

The coefficient of the term in x^3 : $C(r, 3)q^3p^{r-3} = \frac{r(r-1)(r-2)}{6}q^3p^{r-3}$

So, to find p, q and r we have 2 equations:

 $p^r = 16$ and $\frac{r(r-1)}{2}q^2p^{r-2} = \frac{r(r-1)(r-2)}{6}q^3p^{r-3}$ or $p^r = 16$ and 3p = (r-2)q. Equation $p^r = 16$ for 0 has only one solution: <math>p = 2, r = 4. Thus from equation 3p = (r-2)q we have $6 = 2q \rightarrow q = 3$. And finally: $(p + qx)^r = (2 + 3x)^4$.

www.AssignmentExpert.com