Answer on Question \#53840 - Math - Calculus

The position of an object at time t is given by $s(t)=-2-6 t$. Find the instantaneous velocity at $t=2$ by finding the derivative.

Solution

$$
\begin{equation*}
s(t)=-2-6 t \tag{1}
\end{equation*}
$$

According to (1), the first derivative of $s(t)$ with respect to t is
$s^{\prime}(t)=(-2-6 t)^{\prime}=(-2)^{\prime}+(-6 t)^{\prime}=0-6 \cdot 1=-6$
In (2) we used the following formulae:
$(f(t)-g(t))^{\prime}=(f(t))^{\prime}-(g(t))^{\prime}$,
$(A f(t))^{\prime}=A \cdot(f(t))^{\prime}$, where A is a constant,
$(c)^{\prime}=0$, where c is a constant,
$t^{\prime}=1$.

Taking into account (2), the instantaneous velocity at $t=2$ is

$$
v_{i}(2)=s^{\prime}(2)=-6
$$

