Answer on Question \#53836 - Math - Calculus

Find the limit of the function algebraically.
Limit as x approaches zero of quantity nine plus x divided by x to the third power.

Solution

$\lim _{x \rightarrow 0+} \frac{9+x}{x^{3}}=\lim _{\varepsilon \rightarrow 0, \varepsilon>0} \frac{9+(0+\varepsilon)}{(0+\varepsilon)^{3}}=\lim _{\varepsilon \rightarrow 0,}{ }_{\varepsilon>0} \frac{9+\varepsilon}{\varepsilon^{3}}=+\infty$.
By plugging in $\varepsilon=0$, you get 0 in the denominator. By plugging in $\varepsilon=0$, you get 9 in the numerator. This means that the limit is either positive or negative infinity. If the numerator is positive, then the limit is lim =+ infinity (positive infinity). If the numerator is negative, then the limit is lim = - infinity (negative infinity).

Therefore our numerator $9+0=9>0$ is positive.
As a result,
$\lim _{x \rightarrow 0+} \frac{9+x}{x^{3}}=+\infty$.
Similarly
$\lim _{x \rightarrow 0-} \frac{9+x}{x^{3}}=\lim _{\varepsilon \rightarrow 0, \varepsilon>0} \frac{9-\varepsilon}{(-\varepsilon)^{3}}=-\lim _{\varepsilon \rightarrow 0, \varepsilon>0} \frac{9-\varepsilon}{\varepsilon^{3}}=-\infty$.
By the definition of limit, $\lim _{x \rightarrow 0} \frac{9+x}{x^{3}}$ does not exist, because $\lim _{x \rightarrow 0-} \frac{9+x}{x^{3}} \neq \lim _{x \rightarrow 0+} \frac{9+x}{x^{3}}$.

