Answer on Question \#53689 - Math - Differential Equations

The number of bacteria doubles after every hour. If there were 30 bacteria originally find the number of bacteria after 3 days.

Solution

At first, we must construct the differential equation:
$\frac{d y}{d t}=k y$, where $y=y(t)$ is the number of bacteria at time t, k is the proportionality factor.

We will rewrite equation
$\frac{d y}{y}=k d t$
and integrate
$\int \frac{d y}{y}=k \int d t$.
After integrating we will have:
$\ln y=k t+\ln C$. So we have
$y(t)=y_{0} e^{k t}$, where $y_{0}=\ln \mathrm{C}=30$ is the number of bacteria at time $\mathrm{t}=0$.
After 1 hour the number of bacteria doubles:
$y(1)=60=30 e^{k}$. From this, we have: $e^{k}=2$. This gives that
$y(t)=30 \cdot 2^{t}$.
From the last formula we can find the number of bacteria after 3 days (3 days equals 72 hours):
$y(72)=30 \cdot 2^{72} \approx 30 \cdot 4.7 \cdot 10^{21}=141 \cdot 10^{21}$.
Answer: after 3 days the number of bacteria will be $141 \cdot 10^{21}$.

