Answer on Question \#53663 - Math - Calculus

Question

Sketch the graph of f by hand and use your sketch to find the absolute and local maximum and minimum values of f. (If an answer does not exist, enter DNE.) $f(t)=9 \cos t,-3 \pi / 2 \leq t \leq 3 \pi / 2$

Solution

According to the statement of the problem we have

$$
\begin{equation*}
f(t)=9 \cos (t), t \in\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right] . \tag{1}
\end{equation*}
$$

Let's sketch the graph of the given function (See Fig.1)

Fig. 1
Let's solve the given problem in a few steps:

1) determination of the critical values;
2) determination of the local $\mathrm{min} / \mathrm{max}$ values;
3) determination of the absolute $\mathrm{min} / \mathrm{max}$ values.
4) Find the critical values of $f(t)$.

As we know, the critical values of $f(t)$ are numbers in the domain of $f(t)$, where $f^{\prime}(t)=0$ or $f^{\prime}(t)$ DNE.
So we start by taking the derivative in (1):

$$
f^{\prime}(t)=-9 \sin (t)
$$

Note that there are no numbers at which $f^{\prime}(t)$ does not exist, because the sine function is continuous and defined everywhere on the real axis. It follows from equation $f^{\prime}(t)=0$ that the critical values of $f(t)$ on the interval $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$ are $t=-\pi, 0,-\pi$.
2) Find the local max/min values of $f(t)$.

Taking into account (1), evaluate $f(t)$ at each endpoint of $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$ and critical value on the interval $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$

$$
\begin{gathered}
f\left(-\frac{3 \pi}{2}\right)=9 \cos \left(-\frac{3 \pi}{2}\right)=0-\text { there is an endpoint local maximum; } \\
f(-\pi)=9 \cos (-\pi)=-9-\text { there is a local minimum; } \\
f(0)=9 \cos (0)=9-\text { there is a local maximum; } \\
f(\pi)=9 \cos (\pi)=-9-\text { there is a local minimum; } \\
f\left(\frac{3 \pi}{2}\right)=9 \cos \left(\frac{3 \pi}{2}\right)=0-\text { there is an endpoint local maximum. }
\end{gathered}
$$

3) Find the absolute max/min values of $f(t)$ on $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$.

Taking into account (1),
the largest value of function $f(t)$ is

$$
\max _{-\frac{3 \pi}{2} \leq t \leq \frac{3 \pi}{2}} f(t)=\max \left\{f\left(-\frac{3 \pi}{2}\right), f(-\pi), f(0), f(\pi), f\left(\frac{3 \pi}{2}\right)\right\}=\max \{0,-9,9,-9,0\}=9
$$

and the smallest value of function $f(t)$ is

$$
\min _{-\frac{3 \pi}{2} \leq t \leq \frac{3 \pi}{2}} f(t)=\min \left\{f\left(-\frac{3 \pi}{2}\right), f(-\pi), f(0), f(\pi), f\left(\frac{3 \pi}{2}\right)\right\}=\min \{0,-9,9,-9,0\}=-9
$$

Therefore, the absolute maximum of $f(t)$ on $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$ is 9 , occurring at $t=0$, and the absolute minimum of $f(t)$ on $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$ is -9 , occurring at $t=-\pi, \pi$.

Thus, the function $f(t)$ in (1) has both local and absolute maximum of 9 at $t=0: f(0)=9$; and it also has both local and absolute minimums of -9 at $t=-\pi, \pi: f(-\pi)=f(\pi)=-9$.

Answer: $(t, f(t))=(0,9)$ is both a local and the absolute maximum of function $f(t)$ on $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$; $\left(t_{1}, f\left(t_{1}\right)\right)=(-\pi,-9)$ and $\left(t_{2}, f\left(t_{2}\right)\right)=(\pi,-9)$ are both local and absolute minimums of function $f(t)$ on $\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$.

