Answer on Question #53515 – Math – Calculus

Question

Use graphs and tables to find the limit and identify any vertical asymptotes of limit of 1 divided by the quantity x minus 5 as x approaches 5 from the left.

Solution

The function is (x) = 1/(x - 5). The table lists the value of f(x) for several x-values approaches 5 from the left.

x	$f(x) = \frac{1}{x-5}$	[x,f(x)]
4.5	$f(x) = \frac{1}{4.5 - 5} = -2$	(4.5, -2)
4.9	$f(x) = \frac{1}{4.9 - 5} = -10$	(4.9, – 10)
4.99	$f(x) = \frac{1}{4.99 - 5} = -100$	(4.99, –100)
4.999	f(x) = -1000	(4.999, –1000)
4.9999	f(x) = -10000	(4.9999, –10000)
4.99999	f(x) = -100000	(4.99999, -100000)
5	$f(x) = \frac{1}{5-5} = -\infty$	(5, -∞)

The graph of function (x) = 1/(x - 5) is given below

Observe the graph and table, when x approaches 5 from the left, (x - 5) is a small negative number. Thus, the quotient 1/(x-5) is a large negative number and f(x) approaches negative infinity to the left side of x = 5. So, we can conclude that x = 5 is a vertical asymptote of the graph of (x) and

$$\lim_{x \to 5_{-}} f(x) = \lim_{x \to 5_{-}} \frac{1}{x - 5} = -\infty.$$

www.AssignmentExpert.com