Answer on Question \#53406 - Math - Calculus

A geometric series has first term a and common ratio r where a and r are positive constants. The fourth term of the series is $1 / p$, the sum to infinity of the series is p and the sum of the first two terms of the series is $0.75 p$ where p is a positive constant.
Find the values of a, r and p.

Solution

$a_{1}=a, a_{4}=a r^{3}=\frac{1}{p}, S_{2}=a_{1}+a_{2}=a+a r=0.75 p, S=\frac{a}{1-r}=p$.
So adding $1+r=\frac{3}{4} \frac{p}{a}$ and $1-r=\frac{a}{p} \rightarrow 2=\frac{3 p}{4 a}+\frac{a}{p} \rightarrow$

$$
\rightarrow \frac{3}{4}\left(\frac{p}{a}\right)^{2}-2 \frac{p}{a}+1=0 \rightarrow
$$

$\rightarrow \frac{p}{a}=2$ or $\frac{p}{2}=\frac{2}{3}$.

1) $\frac{p}{a}=2 \rightarrow 1+r=\frac{3}{4} * 2=\frac{3}{2} \rightarrow r=\frac{1}{2}$;

$$
a r^{3}=\frac{1}{p} \rightarrow p=\frac{8}{a}, \frac{a}{1-r}=p \rightarrow 2 a=p \rightarrow 2 a=\frac{8}{a} \rightarrow a=2, p=4
$$

2) $\frac{p}{a}=\frac{2}{3} \rightarrow 1+r=\frac{3}{4} * \frac{2}{3}=\frac{1}{2} \rightarrow r=-\frac{1}{2}<0$, which contradicts the requirement r is a positive constant. Therefore case $\frac{p}{a}=\frac{2}{3}$ is impossible.

Thus we have the only solution: $a=2, r=\frac{1}{2}, p=4$.

