Answer on Question \#52703- Math - Differential Calculus | Equations

Solve the following by Bernoulli equation
$d y / d x+y / 2 x=x / y^{\wedge} 3$
$\frac{d y}{d x}+\frac{y}{2 x}=\frac{x}{y^{3}}$

Solution

Let $z=y^{1-(-3)}=y^{4}$, then
$\frac{d z}{d x}=4 y^{3} \frac{d y}{d x}$
$\frac{d y}{d x}=\frac{1}{4 y^{3}} \frac{d z}{d x}$
$\frac{1}{4 y^{3}} \frac{d z}{d x}+\frac{y}{2 x}=\frac{x}{y^{3}}$
$\frac{d z}{d x}+\frac{4 y^{4}}{2 x}=4 x$
$\frac{d z}{d x}+\frac{2}{x} z=4 x$
This is a linear first order ordinary differential equation in the dependent variable x. We write the equation in the form:
$\frac{d z}{d x}+P(x) z=Q(x)$
$\frac{d z}{d x}+\frac{2}{x} z=4 x$
So $P(x)=\frac{2}{x}, Q(x)=4 x$
The integrating factor is
$\mu(x)=e^{\int P(x) d x}$
that is,
$\mu(x)=e^{\int \frac{2}{x} d x}$
$\int \frac{2}{x} d x=2 \ln x$
$\mu(x)=e^{2 \ln x}=x^{2}$
Consider a differential equation
$\frac{d z}{d x}+\frac{2}{x} z=4 x$
multiplying by x^{2} gives
$x^{2} \frac{d z}{d x}+2 x z=4 x^{3}$
so, $\left(x^{2} z\right)^{\prime}=4 x^{3}$
integrating both sides with respect to x gives
$x^{2} z=x^{4}+C$,
whence
$z=x^{2}+\frac{C}{x^{2}}$,
where C is an arbitrary real constant.
Recalling the substitution $z=y^{4}$, obtain that
$y^{4}=x^{2}+\frac{C}{x^{2}}$,
where C is an arbitrary real constant.
The solution to a linear first order differential equation is then
$z(x)=\frac{\int \mu(x) Q(x) d x+C}{\mu(x)}$
$z(x)=\frac{\int 4 x^{3} d x+C}{x^{2}}=\frac{x^{4}+C}{x^{2}}=x^{2}+\frac{C}{x^{2}}$,
where C is an arbitrary real constant.

Answer:

$y^{4}(x)=x^{2}+\frac{C}{x^{2}}$

