Answer on Question #52676 – Math – Linear Algebra

Question

a. Consider the function f:R\ $\{-1\}$ \rightarrow R defined by f(x)=2x+1 /x+1.

1) Check that f(x) is well defined and 1-1.

2) Check that f(x) is not equal to 2 for any $x \in \mathbb{R}$.

3) Check that g:R\{2} \rightarrow R given by g(x)=x-1/2-x is well defined and 1-1. Further, check that g(x) is not equal to -1 for any x \in R.

4) Check that $(f \circ g)(x)=x$ for $x \in \mathbb{R} \setminus \{2\}$ and $(g \circ f)(x)=x$ for $x \in \mathbb{R} \setminus \{-1\}$.

b. Find the direction cosines of the perpendicular from the origin to the plane $r \cdot (6i+4j+2\sqrt{3k})+2=0$.

Solution

a.

1) The function $f(x) = \frac{2x+1}{x+1}$ is defined everywhere except point x = -1.

Suppose that $f(x_1) = f(x_2)$, that is, $\frac{2x_1+1}{x_1+1} = \frac{2x_2+1}{x_2+1}$, which is equivalent to

$$\frac{2x_1+2-1}{x_1+1} = \frac{2x_2+2-1}{x_2+1}$$

$$2 - \frac{1}{x_1 + 1} = 2 - \frac{1}{x_2 + 1}$$

Subtract 2 from both sides of equality

$$-\frac{1}{x_1+1} = -\frac{1}{x_2+1}$$

The left-hand and right-hand sides of equality are equal, numerators in both sides are equal, hence denominators in both sides should be equal, that is,

$$x_1 + 1 = x_2 + 1$$

Subtract 1 from both sides and obtain

$$x_1 = x_2.$$

If $f(x_1) = f(x_2)$ implies that $x_1 = x_2$, then f is one-to-one function. This statement was proved before.

Finally, $f(x) = \frac{2x+1}{x+1}$ is one-to-one function.

2)

$$f(x) = \frac{2x+1}{x+1} = \frac{2x+2-1}{x+1} = 2 - \frac{1}{x+1}$$

So, one can easily see that f(x) is not equal to 2 for any $x \in \mathbb{R}$, because $\frac{1}{x+1}$ is never equal to 0.

3)

Function $g(x) = \frac{x-1}{2-x}$ is defined everywhere except point x = 2.

Suppose that $g(x_1) = g(x_2)$, that is, $\frac{x_1-1}{2-x_1} = \frac{x_2-1}{2-x_2}$, which is equivalent to

$$-\frac{x_1-1}{x_1-2} = -\frac{x_2-1}{x_2-2}$$
$$-\frac{x_1-2+1}{x_1-2} = -\frac{x_2-2+1}{x_2-2}$$
$$-1 - \frac{1}{x_1-2} = -1 - \frac{1}{x_2-2}$$

Add 1 to both sides of equality

$$-\frac{1}{x_1 - 2} = -\frac{1}{x_2 - 2}$$

The left-hand and right-hand sides of equality are equal, numerators in both sides are equal, hence denominators in both sides should be equal, that is,

$$x_1 - 2 = x_2 - 2$$

Add 2 to both sides and obtain

$$x_1 = x_2.$$

If $g(x_1) = g(x_2)$ implies that $x_1 = x_2$, then g is one-to-one function. This statement was proved before.

Finally, $g(x) = \frac{x-1}{2-x}$ is one-to-one function.

$$(fog)(x) = f(g(x)) = \frac{2g(x) + 1}{g(x) + 1} = \frac{2 \cdot \frac{x - 1}{2 - x} + 1}{\frac{x - 1}{2 - x} + 1} = \frac{\frac{2 \cdot (x - 1) + 1 \cdot (2 - x)}{2 - x}}{\frac{x - 1 + 1 \cdot (2 - x)}{2 - x}}$$
$$= \frac{\frac{2x - 2 + 2 - x}{2 - x}}{\frac{x - 1 + 2 - x}{2 - x}} = \frac{\frac{x}{2 - x}}{\frac{1}{2 - x}} = x.$$

$$(gof)(x) = g(f(x)) = \frac{f(x) - 1}{2 - f(x)} = \frac{\frac{2x + 1}{x + 1} - 1}{2 - \frac{2x + 1}{x + 1}} = \frac{\frac{2x + 1 - (x + 1)}{x + 1}}{\frac{2(x + 1) - (2x + 1)}{x + 1}} = \frac{\frac{2x + 1 - x - 1}{x + 1}}{\frac{2x + 2 - 2x - 1}{x + 1}}$$
$$= \frac{\frac{x}{x + 1}}{\frac{1}{x + 1}} = x.$$

b) Normal vector for this plane $r \cdot (6i+4j+2\sqrt{3k})+2=0$ is $(6,4, 2\sqrt{3})$, its length is

$$|(6,4,2\sqrt{3})| = \sqrt{36+16+12} = 8.$$

The direction cosines of the perpendicular from the origin to the plane $r \cdot (6i+4j+2\sqrt{3k})+2=0$ are

$$\frac{6}{8} = \frac{3}{4}, \frac{4}{8} = \frac{1}{2}$$
 and $\frac{2\sqrt{3}}{8} = \frac{\sqrt{3}}{4}$.

Answer: a) Yes; b) $\left(\frac{3}{4}, \frac{1}{2}, \frac{\sqrt{3}}{4}\right)$.