## Answer on Question #52674 – Math – Multivariable Calculus

i) Determine which of the vector fields given below is conservative

a) 
$$F = (\frac{y}{x^2 + y^2} - 1)i - \frac{x}{x^2 + y^2}j$$
  
b)  $F = (\frac{x}{x^2 + y^2} - 1)i - \frac{y}{x^2 + y^2}j$ 

ii) Show the points  $A\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$  and  $B\left(-\pi, \pi\right)$  on the x,y-plane

iii) Calculate the work done (in dimensionless units) by the conservative field between these points, while presenting answer in exact form and then calculate up to four significant figures

## Solution:

i) For the field to be conservative the following condition should be met

$$\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x}$$

a) Let's check if this condition holds for F

$$\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y} \left( \frac{y}{x^2 + y^2} - 1 \right) = \frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
$$\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x} \left( -\frac{x}{x^2 + y^2} \right) = -\frac{1}{x^2 + y^2} + \frac{2x^2}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

Since  $\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x}$ , the given vector field is conservative.

b) Let's check if this condition holds for F

$$\frac{\partial F_x}{\partial y} = \frac{\partial}{\partial y} \left( \frac{x}{x^2 + y^2} - 1 \right) = -\frac{2xy}{(x^2 + y^2)^2}$$
$$\frac{\partial F_y}{\partial x} = \frac{\partial}{\partial x} \left( -\frac{y}{x^2 + y^2} \right) = \frac{2xy}{(x^2 + y^2)^2}$$

Since  $\frac{\partial F_x}{\partial y} \neq \frac{\partial F_y}{\partial x}$ , the given vector field is not conservative.



ii)

iii) It's easy to verify that this field has the following potential function

$$V = x - \arctan\left(\frac{x}{y}\right)$$

Indeed

$$F_{x} = -\frac{\partial V}{\partial x} = -1 + \frac{\frac{1}{y}}{1 + \frac{x^{2}}{y^{2}}} = \frac{y}{x^{2} + y^{2}} - 1$$
$$F_{y} = -\frac{\partial V}{\partial y} = \frac{-\frac{x}{y^{2}}}{1 + \frac{x^{2}}{y^{2}}} = -\frac{x}{x^{2} + y^{2}}$$

Therefore, the work done by field between points A and B is given by

$$W = V(B) - V(A) = -\pi - \arctan\left(\frac{-\pi}{\pi}\right) - \left(\frac{\pi}{6} - \arctan\left(\frac{\pi/6}{\pi/6}\right)\right) =$$
$$= -\pi - \arctan(-1) - \left(\frac{\pi}{6} - \arctan(1)\right) = -\pi - \left(-\frac{\pi}{4}\right) - \left(\frac{\pi}{6} - \frac{\pi}{4}\right) = -\frac{2}{3}\pi$$

Answer:

i) a) iii)  $-\frac{2}{3}\pi$ 

www.AssignmentExpert.com