Answer on Question #52639 – Math, Combinatorics – Number Theory

Question. Show that if (b, c) = 1 then (a, bc) = (a, b)(a, c).

Proof. Denote $d_b = (a, b)$, $d_c = (a, c)$, and d = (a, bc). We have to prove that $d = d_b d_c$.

First we show that

 $(d_b, d_c) = 1.$

Indeed, denote $k = (d_b, d_c)$. Then k divides d_b which in turn divides b, and k also divides d_c which in turn divides c. Therefore k divides both b and c, whence it divides their greatest common divisor (b, c) = 1. Hence $k = (d_b, d_c) = 1$.

Further notice that both d_b and d_c divide a and bc, whence

 d_b and d_c divide d = (a, bc).

We will now show that

the product $d_b d_c$ divides d.

Indeed, we have that $d = pd_b = qd_c$ for some integers p, q. Moreover, the relation $(d_b, d_c) = 1$ means that there exist integers x, y such that

 $xd_b + yd_c = 1.$

Multiplying both sides of this identity by d we get

$$xd_bd + yd_cd = d,$$

$$xd_bd_cq + yd_cd_bp = d,$$

$$d = d_bd_c(xq + yp).$$

 \mathbf{SO}

$$a = a_b a_c (xq +$$

Thus $d_b d_c$ divides d.

It remains to prove the inverse statement that

d divides the product $d_b d_c$.

We have proved that $d = d_b d_c u$ for some integer u. If u = 1, then $d = d_b d_c$ and our statement is proved.

Suppose u > 1. Then u has some prime divisor p > 1, so u = pv for some integer v, and thus

$$d = d_b d_c p v$$

In particular, both pd_b and pd_c divide a, as d does so.

Write $b = bd_b$, $c = \bar{c}d_c$ and bc = wd for some integers b, \bar{c}, w . Then

$$bc = bd_b \bar{c} d_c = wd = wd_b d_c pv_s$$

whence

$$\bar{b}\bar{c} = wpv$$

Thus p divides $\bar{b}\bar{c}$. But since p is prime it must divide either \bar{b} or \bar{c} .

If p divides b, then pd_b divides $bd_b = b$. However, as noted above, pd_b also divides a, whence pd_b divides the greatest common divisor $d_b = (a, b)$. Therefore $pd_b \leq d_b$, which is possible only when p = 1. The latter contradicts to the assumption that p > 1. Therefore p can not divide b.

By similar arguments p can not divide c.

Thus we get a contradiction with the assumption u > 1. Therefore u = 1, whence $d = d_b d_c$.

www.AssignmentExpert.com