Answer on Question \#52639 - Math, Combinatorics - Number Theory
Question. Show that if $(b, c)=1$ then $(a, b c)=(a, b)(a, c)$.
Proof. Denote $d_{b}=(a, b), d_{c}=(a, c)$, and $d=(a, b c)$. We have to prove that $d=d_{b} d_{c}$.
First we show that

$$
\left(d_{b}, d_{c}\right)=1 .
$$

Indeed, denote $k=\left(d_{b}, d_{c}\right)$. Then k divides d_{b} which in turn divides b, and k also divides d_{c} which in turn divides c. Therefore k divides both b and c, whence it divides their greatest common divisor $(b, c)=1$. Hence $k=\left(d_{b}, d_{c}\right)=1$.

Further notice that both d_{b} and d_{c} divide a and $b c$, whence

$$
d_{b} \text { and } d_{c} \text { divide } d=(a, b c) .
$$

We will now show that
the product $d_{b} d_{c}$ divides d.
Indeed, we have that $d=p d_{b}=q d_{c}$ for some integers p, q. Moreover, the relation $\left(d_{b}, d_{c}\right)=1$ means that there exist integers x, y such that

$$
x d_{b}+y d_{c}=1 .
$$

Multiplying both sides of this identity by d we get

$$
\begin{gathered}
x d_{b} d+y d_{c} d=d, \\
x d_{b} d_{c} q+y d_{c} d_{b} p=d,
\end{gathered}
$$

so

$$
d=d_{b} d_{c}(x q+y p) .
$$

Thus $d_{b} d_{c}$ divides d.

It remains to prove the inverse statement that

$$
d \text { divides the product } d_{b} d_{c} \text {. }
$$

We have proved that $d=d_{b} d_{c} u$ for some integer u. If $u=1$, then $d=d_{b} d_{c}$ and our statement is proved.

Suppose $u>1$. Then u has some prime divisor $p>1$, so $u=p v$ for some integer v, and thus

$$
d=d_{b} d_{c} p v
$$

In particular, both $p d_{b}$ and $p d_{c}$ divide a, as d does so.
Write $b=\bar{b} d_{b}, c=\bar{c} d_{c}$ and $b c=w d$ for some integers \bar{b}, \bar{c}, w. Then

$$
b c=\bar{b} d_{b} \bar{c} d_{c}=w d=w d_{b} d_{c} p v,
$$

whence

$$
\bar{b} \bar{c}=w p v .
$$

Thus p divides $\bar{b} \bar{c}$. But since p is prime it must divide either \bar{b} or \bar{c}.
If p divides \bar{b}, then $p d_{b}$ divides $\bar{b} d_{b}=b$. However, as noted above, $p d_{b}$ also divides a, whence $p d_{b}$ divides the greatest common divisor $d_{b}=(a, b)$. Therefore $p d_{b} \leq d_{b}$, which is possible only when $p=1$. The latter contradicts to the assumption that $p>1$. Therefore p can not divide b.

By similar arguments p can not divide c.
Thus we get a contradiction with the assumption $u>1$. Therefore $u=1$, whence $d=d_{b} d_{c}$.

