Answer on Question \#52638 - Math - Combinatorics | Number Theory

If $(a, b)=1$ then prove that $(a-b, a+b, a b)=1$

Solution

Let a, b be natural numbers.
Let's prove it by contradiction. Suppose that there exists natural c such that $(a-b, a+b, a b)=c$. This means that there exist natural m, k and n such that $a-b=n c$ and $a+b=m c$ and $a b=k c$.
Thus, $(a-b)+(a+b)=(n c)+(m c) \Rightarrow 2 a=c(n+m) \Rightarrow n+m=\frac{2 a}{c}$. Since m and n are natural, then $(n+m)$ is natural. This means that 1) $c=2$ or 2) c has a divisor d such that $d \mid a$. In the same time we have $(a+b)-(a-b)=(m c)-(n c) \Rightarrow 2 b=c(m-n) \Rightarrow m-n=\frac{2 b}{c}$. Since m and n are natural, then $(m-n)$ is natural. This means that 1) $c=2$ or 2) c has a divisor d such that $d \mid b$.
Due to conditions of the question, we have $(a, b)=1$, therefore $c=2$. So, $a b=2 k$, i.e. $a b$ is even, this means that some of numbers a, b is even. Assume that b is even, i.e. there exists natural l such that $b=2 l$.
Since $a-b=n c \Rightarrow a-2 l=2 n \Rightarrow a=2(n+l)$, hence a is even.
Thus, we obtain that a and b are even numbers. So we come to a contradiction with $(a, b)=1$. So initial assumption $(a-b, a+b, a b)=c$ does not hold true.
This means that if $(a, b)=1$ then $(a-b, a+b, a b)=1$.

