Answer on Question \#52628 - Math - Vector Calculus

1) Verify that the vector fields are conservation by comparing cross derivatives, then potential functions for the, by taking anti-derivatives
A) $f=(z, 1, x)$
B) $f=\left(y^{2}, 2 x y+e^{z}, y e^{z}\right)$
C) $f=(\cos z, 2 y,-x \sin z)$

Solution

Curl is given by

$$
\nabla \times f=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right|=\left[\frac{\partial f_{z}}{\partial y}-\frac{\partial f_{y}}{\partial z}\right] \vec{\imath}+\left[\frac{\partial f_{x}}{\partial z}-\frac{\partial f_{z}}{\partial x}\right] \vec{\jmath}+\left[\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right] \vec{k}
$$

A) Since

$$
\begin{gathered}
\nabla \times f=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z & 1 & x
\end{array}\right|=\left[\frac{\partial x}{\partial y}-\frac{\partial 1}{\partial z}\right] \vec{\imath}+\left[\frac{\partial z}{\partial z}-\frac{\partial x}{\partial x}\right] \vec{\jmath}+\left[\frac{\partial 1}{\partial x}-\frac{\partial z}{\partial y}\right] \vec{k}= \\
=[0-0] \vec{\imath}+[1-1] \vec{\jmath}+[0-0] \vec{k}=\overrightarrow{0},
\end{gathered}
$$

the vector field f is conservative. It's easy to verify $(f=\nabla V)$ that its potential function is given by
$V=x z+y+C$ (where C is an arbitrary real constant), because
$\nabla V=\left(\frac{\partial(x z+y+C)}{\partial x} ; \frac{\partial(x z+y+C)}{\partial y} ; \frac{\partial(x z+y+C)}{\partial z}\right)=(z, 1, x)$.
To find function V, solve the following system
$\frac{\partial V}{\partial x}=f_{x}, \frac{\partial V}{\partial y}=f_{y}, \frac{\partial V}{\partial z}=f_{z} ;$ that is,
$\frac{\partial V}{\partial x}=z, \frac{\partial V}{\partial y}=1, \frac{\partial V}{\partial z}=x ;$
For $\frac{\partial V}{\partial x}=z$ integrate both sides with respect to x and obtain $V=z x+g(y, z)$. Taking the partial derivative of the both sides with respect to y obtain
$\frac{\partial V}{\partial y}=\frac{\partial}{\partial y}(z x+g(y, z))=\frac{\partial g(y, z)}{\partial y}$.
On the other hand, taking into account the system, $\frac{\partial V}{\partial y}=1$.

Equating right-hand sides of two formulas gives $\frac{\partial g(y, z)}{\partial y}=1$.
Integrating both sides with respect to y obtain $g(y, z)=y+C(z)$, hence

$$
V=z x+g(y, z)=z x+y+C(z)
$$

Taking the partial derivative of the both sides with respect to z obtain
$\frac{\partial V}{\partial z}=\frac{\partial}{\partial z}(z x+y+C(z))=x+C^{\prime}(z)$.
On the other hand, taking into account the system, $\frac{\partial V}{\partial z}=x$.
Equating right-hand sides of two formulas gives $x+C^{\prime}(z)=x$, hence $C^{\prime}(z)=0$, integrating with respect to z gives $C(z)=C$, where C is an arbitrary real constant.

Thus, $V=z x+g(y, z)=z x+y+C(z)=z x+y+C$.
B) Since

$$
\begin{aligned}
\nabla \times f= & \left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} & 2 x y+e^{z} & y e^{z}
\end{array}\right|= \\
& =\left[\frac{\partial\left(y e^{z}\right)}{\partial y}-\frac{\partial\left(2 x y+e^{z}\right)}{\partial z}\right] \vec{\imath}+\left[\frac{\partial\left(y^{2}\right)}{\partial z}-\frac{\partial\left(y e^{z}\right)}{\partial x}\right] \vec{\jmath} \\
& +\left[\frac{\partial\left(2 x y+e^{z}\right)}{\partial x}-\frac{\partial\left(y^{2}\right)}{\partial y}\right] \vec{k} \\
& =\left[e^{z}-e^{z}\right] \vec{\imath}+[0-0] \vec{\jmath}+[2 y-2 y] \vec{k}=\overrightarrow{0}
\end{aligned}
$$

the vector field f is conservative. It's easy to verify $(f=\nabla V)$ that its potential function is given by
$V=x y^{2}+y e^{z}+C$ (where C is an arbitrary real constant),
because

$$
\nabla V=\left(\frac{\partial\left(x y^{2}+y e^{z}+C\right)}{\partial x} ; \frac{\partial\left(x y^{2}+y e^{z}+C\right)}{\partial y} ; \frac{\partial\left(x y^{2}+y e^{z}+C\right)}{\partial z}\right)=\left(y^{2}, e^{z}, y e^{z}\right)
$$

To find function V, solve the following system
$\frac{\partial V}{\partial x}=f_{x}, \frac{\partial V}{\partial y}=f_{y}, \frac{\partial V}{\partial z}=f_{z} ;$ that is,
$\frac{\partial V}{\partial x}=y^{2}, \frac{\partial V}{\partial y}=2 x y+e^{z}, \frac{\partial V}{\partial z}=y e^{z} ;$

For $\frac{\partial V}{\partial x}=y^{2}$ integrate both sides with respect to x and obtain $V=x y^{2}+g(y, z)$. Taking the partial derivative of the both sides with respect to y obtain
$\frac{\partial V}{\partial y}=\frac{\partial}{\partial y}\left(x y^{2}+g(y, z)\right)=2 x y+\frac{\partial g(y, z)}{\partial y}$.
On the other hand, taking into account the system, $\frac{\partial V}{\partial y}=2 x y+e^{z}$.
Equating right-hand sides of two formulas gives $\frac{\partial g(y, z)}{\partial y}=e^{z}$.
Integrating both sides with respect to y obtain $g(y, z)=y e^{z}+C(z)$, hence

$$
V=x y^{2}+g(y, z)=x y^{2}+y e^{z}+C(z) .
$$

Taking the partial derivative of the both sides with respect to z obtain $\frac{\partial V}{\partial z}=\frac{\partial}{\partial z}\left(x y^{2}+y e^{z}+C(z)\right)=y e^{z}+C^{\prime}(z)$.

On the other hand, taking into account the system, $\frac{\partial V}{\partial z}=y e^{z}$.
Equating right-hand sides of two formulas gives $y e^{z}+C^{\prime}(z)=y e^{z}$, hence $C^{\prime}(z)=0$, integrating with respect to z gives $C(z)=C$, where C is an arbitrary real constant.

Thus, $\quad V=x y^{2}+g(y, z)=x y^{2}+y e^{z}+C(z)=x y^{2}+y e^{z}+C$
C) Since

$$
\begin{aligned}
\nabla \times f= & \left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\cos z & 2 y & -x \sin z
\end{array}\right|= \\
& =\left[\frac{\partial(-x \sin z)}{\partial y}-\frac{\partial(2 y)}{\partial z}\right] \vec{\imath}+\left[\frac{\partial(\cos z)}{\partial z}-\frac{\partial(-x \sin z)}{\partial x}\right] \vec{\jmath} \\
& +\left[\frac{\partial(2 y)}{\partial x}-\frac{\partial(\cos z)}{\partial y}\right] \vec{k} \\
& =[0-0] \vec{\imath}+[-\sin z-(-\sin z)] \vec{\jmath}+[0-0] \vec{k}=\overrightarrow{0}
\end{aligned}
$$

the vector field f is conservative. It's easy to verify $(f=\nabla V)$ that its potential function is given by
$V=y^{2}+x \cos z+C$ (where C is an arbitrary real constant), because

$$
\nabla V=\left(\frac{\partial\left(y^{2}+x \cos z+C\right)}{\partial x} ; \frac{\partial\left(y^{2}+x \cos z+C\right)}{\partial y} ; \frac{\partial\left(y^{2}+x \cos z+C\right)}{\partial z}\right)=(\cos z, 2 y,-x \sin z) .
$$

To find function V, solve the following system
$\frac{\partial V}{\partial x}=f_{x}, \frac{\partial V}{\partial y}=f_{y}, \frac{\partial V}{\partial z}=f_{z} ;$ that is,
$\frac{\partial V}{\partial x}=\cos z, \frac{\partial V}{\partial y}=2 y, \frac{\partial V}{\partial z}=-x \sin z ;$
For $\frac{\partial V}{\partial x}=\cos z$ integrate both sides with respect to x and obtain $V=x \cos z+g(y, z)$.
Taking the partial derivative of the both sides with respect to y obtain
$\frac{\partial V}{\partial y}=\frac{\partial}{\partial y}(x \cos z+g(y, z))=\frac{\partial g(y, z)}{\partial y}$.
On the other hand, taking into account the system, $\frac{\partial V}{\partial y}=2 y$.
Equating right-hand sides of two formulas gives $\frac{\partial g(y, z)}{\partial y}=2 y$.
Integrating both sides with respect to y obtain $g(y, z)=y^{2}+C(z)$, hence $V=x \cos z+g(y, z)=x \cos z+y^{2}+C(z)$.

Taking the partial derivative of the both sides with respect to z obtain
$\frac{\partial V}{\partial z}=\frac{\partial}{\partial z}\left(x \cos z+y^{2}+C(z)\right)=-x \sin z+C^{\prime}(z)$.
On the other hand, taking into account the system, $\frac{\partial V}{\partial z}=-x \sin z$.
Equating right-hand sides of two formulas gives $-x \sin z+C^{\prime}(z)=-x \sin z$, hence $C^{\prime}(z)=0$, integrating with respect to z gives $C(z)=C$, where C is an arbitrary real constant.

Thus, $\quad V=x \cos z+g(y, z)=x \cos z+y^{2}+C(z)=x \cos z+y^{2}+C$

Answer:

A) $x z+y+C$
B) $x y^{2}+y e^{z}+C$
C) $x \cos z+y^{2}+C$

