Answer on Question #52628 - Math - Vector Calculus

1) Verify that the vector fields are conservation by comparing cross derivatives, then
potential functions for the, by taking anti-derivatives

A) f=(z1x)
B) f=(%2xy +e?, ye?)
C) f =(cosz,2y,—xsinz)
Solution
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the vector field f is conservative. It’s easy to verify (f = VV) that its potential function is
given by

V = xz + y + C (where C is an arbitrary real constant), because

_ (0(xz+y+C) d(xz+y+C) 6(xz+y+C)) _
W= (2 0, D) = (2,1, %).

To find function V, solve the following system

av v v .
_x = fx,a = fy, E = fo that IS,
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For o, = Z integrate both sides with respect to x and obtain V = zx + g(y, z). Taking

the partial derivative of the both sides with respect to y obtain
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On the other hand, taking into account the system, — 3y =1.
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Equating right-hand sides of two formulas gives 3y

Integrating both sides with respect to y obtain g(y,z) = y + C(2), hence
V=zx+glyz)=zx+y+C(2).

Taking the partial derivative of the both sides with respect to z obtain

v _ 2 ,
5—5(zx+y+6(z))—x+6(z).
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On the other hand, taking into account the system, 5, =X

Equating right-hand sides of two formulas gives x + C'(z) = x, hence C'(z) =0,
integrating with respect to z gives C(z) = C, where C is an arbitrary real constant.

Thus, V=zx+g(y,z) =zx+y+C(z) =zx+y+C.

B) Since
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the vector field f is conservative. It’s easy to verify (f = VV) that its potential function is

given by
V = xy? + ye? + C (where Cis an arbitrary real constant),

because

d(xy*+ye?+C) d(xy?+ye?+C) d(xy*+ye?+C)
dx ! oy ! 0z

w = ( ) = 02 e%,ye).

To find function V, solve the following system

v v v .
e = fx,a = fyr 3 = fz; that is,
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For Z—Z = y? integrate both sides with respect to x and obtain V = xy? + g(y, z). Taking

the partial derivative of the both sides with respect to y obtain
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(xy +9g(y,2)) =2xy +—— ag(yz)
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On the other hand, taking into account the system, % = 2xy + e”.

ag(y,Z) — eZ

Equating right-hand sides of two formulas gives 3y

Integrating both sides with respect to y obtain g(y, z) = ye? + C(z), hence
V=xy?+g(y,z) =xy?+ye?+ C(2).

Taking the partial derivative of the both sides with respect to z obtain

6V

5= (xy + ye? + C(2)) = ye? + C'(2).

. v
On the other hand, taking into account the system, PPl yeZ .

Equating right-hand sides of two formulas gives ye? + C (z) = ye?, hence € (z) = 0,
integrating with respect to z gives C(z) = C, where C is an arbitrary real constant.

Thus, V=xy?+g(y,z) =xy*>+ye?+C(z) = xy*> +ye?+C

C) Since
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the vector field f is conservative. It’s easy to verify (f = VV) that its potential function is
given by

V = y? + xcosz + C (where C is an arbitrary real constant), because

d(y?+xcosz+C) 9(y?+xcosz+C) (y?+xcosz+C)
ox ! dy ! 0z

VV = ( ) = (cosz, 2y, —xsinz).



To find function V, solve the following system

v v av .
Pl fx,a = fy» 5, = fz; thatis,

v _ cosz v _ 2 v _ —xsinz;
ax "9y Yiaz = ’
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For é = cosz integrate both sides with respect to x and obtain V = xcosz + g(y, z).

Taking the partial derivative of the both sides with respect to y obtain
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¥ = 3y (xcosz+ g(y,2)) =

29(y.7)
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On the other hand, taking into account the system, % = 2y.

Equating right-hand sides of two formulas gives 99trz) _ 2y.

Integrating both sides with respect to y obtain g(y,z) = y% + C(z), hence
V = xcosz + g(y,z) = xcosz + y* + C(2).

Taking the partial derivative of the both sides with respect to z obtain

Z—: = aa—z(xcosz +y2 + C(2)) = —xsinz + C (2).
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On the other hand, taking into account the system, a—z = —xsinz.
Equating right-hand sides of two formulas gives —xsinz + C(z) = —xsinz, hence
C'(z) = 0, integrating with respect to z gives C(z) = C, where C is an arbitrary real
constant.

Thus, V = xcosz + g(y,z) = xcosz + y? + C(z) = xcosz + y2 + C

Answer:
A) xz+y+C
B) xy?+ye?+C

C) xcosz+y?+C

www.AssighmentExpert.com



