Answer on Question \#52574 - Math - Combinatorics | Number Theory

Q. For n belongs to Z or $\mathrm{n}>0 \mathrm{c}$ belongs to Z . Prove that $10^{n}+3 \cdot 4^{n+2}+5$ is divisible by 9 .

Solution

The principle of mathematical induction (P.M.I.) will be applied.
Let $f(n)=10^{n}+3 \cdot 4^{n+2}+5, n \in \mathbb{Z}$
Let $n=1$
$f(1)=10^{1}+3 \cdot 4^{1+2}+5=10+192+5=207=9 \cdot 23$
$f(1)$ is divisible by 9 i.e., the result is true for $n=1$
Let the result be true for $n=k$
Assume that $f(k)=10^{k}+3 \cdot 4^{k+2}+5$ is divisible by 9
Let $10^{k}+3 \cdot 4^{k+2}+5=9 \cdot M, M \in \mathbb{Z}$.
Let $n=k+1$

$$
\begin{aligned}
& 10^{k+1}+3 \cdot 4^{(k+1)+2}+5=10 \cdot 10^{k}+3 \cdot 4^{k+3}+5=10\left(9 M-3 \cdot 4^{k+2}-5\right)+3 \cdot 4^{k+3}+5= \\
& =90 M+3 \cdot 4^{k+3}-10 \cdot 3 \cdot 4^{k+2}+50-5=90 M+3 \cdot 4^{k+2}(4-10)+45=90 M-18 \cdot 4^{k+2}+45= \\
& =9\left(10 M-2 \cdot 4^{k+2}+5\right)
\end{aligned}
$$

By P.M.I., $10^{n}+3 \cdot 4^{n+2}+5$ is divisible by 9 .

