Answer on Question \#52570 - Math, Combinatorics - Number Theory
Question. If $a=b q+r$ then show that $(a, b)=(b, r)$.
Solution. First recall that the relation $(a, b)=1$ is equivalent to the assumption that there exist integer numbers x, y such that

$$
a x+b y=1
$$

Using this we can prove the required statement. The proof uses the following lemma.
Lemma. If $(a, b)=1$, then $(a d, b d)=d$ for each $d \geq 1$.
Proof. Indeed, by definition d divides $a d$ and $b d$. Conversely, suppose e divides $a d$ and $b d$, so $a d=\bar{a} e$ and $b d=\bar{b} e$ for some integers \bar{a} and \bar{b}. Since $(a, b)=1$, i.e. $a x+b y=1$ for some x, y, we have that

$$
d=a d x+b d y=\bar{a} e x+\bar{b} e y=(\bar{a} x+\bar{b} y) e,
$$

and so e divides d. Thus d is the greatest common divisor of $a d$ and $b d$, i.e. $(a d, b d)=d$. Lemma is proved.

Consider now two cases.
Case 1. First suppose that $(a, b)=1$, so $a x+b y=1$ for some integer x, y. We should show that $(b, r)=1$ as well, that is $b t+r s=1$ for some integer r, s. We have that

$$
1=a x+b y=(b q+r) x+b y=b(q+y)+r x
$$

and so $(b, r)=1$.
Case 2. Now suppose $(a, b)=d$ for some $d>1$. This means that $a=\bar{a} d$ and $b=\bar{b} d$, where $(\bar{a}, \bar{b})=1$.

Then from $a=b q+r$ we get that

$$
\begin{aligned}
& \bar{a} d=\bar{b} d q+r, \\
& r=(\underbrace{\bar{a}-\bar{b} q}_{\bar{r}}) d .
\end{aligned}
$$

Denote the expression in the brackets by \bar{r} :

$$
\bar{r}=\bar{a}-\bar{b} q,
$$

then

$$
r=\bar{r} d, \quad \bar{a}=\bar{b} q+\bar{r} .
$$

Since $(\bar{a}, \bar{b})=1$, it follows from Case 1 that $(\bar{a}, \bar{b})=(\bar{b}, \bar{r})=1$. Hence by Lemma

$$
(b, r)=(\bar{b} d, \bar{r} d)=(b, r) d=d .
$$

In both cases we showed that $(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{r})$.

