Answer on Question \#52569 - Math, Combinatorics - Number Theory
Question. If $(a, b)=1$, then prove that $(a-b, a+b, a b)=1$.
Solution. Notice that the statement $(a, b)=1$ is equivalent to the assumption that there exist integer numbers p, q such that

$$
a p+b q=1
$$

We should prove that $(a-b, a+b, a b)=1$, i.e. that the greatest common divisor of all three numbers $a+b a-b$ and $a b$ is 1 . However, it may happens that some of them are not relatively prime.

For instance $(5,3)=1$, but $(5+3,5-3)=2$. Nevertheless in this case we have that $(5+3,5-3,5 \cdot 3)=1$.

It suffices to show that

$$
(a+b, a b)=1,
$$

that is $a+b$ and $a b$ has no nontrivial common divisors. This will imply that all three numbers $a-b, a+b$ and $a b$ has no nontrivial common divisors, i.e. $(a-b, a+b, a b)=1$. For the proof we need two lemmas.
Lemma 1. If $(a, b)=1$, then $(a, a+b)=(b, a+b)=1$ as well.
Proof. It suffices only to prove that $(a, a+b)=1$. From $a p+b q=1$, we geet

$$
1=(a, b)=a p+b q=a p-a q+a q+b q=a(p-q)+(a+b) q=(a, a+b)
$$

Lemma 1 is proved.
Lemma 2. If $(x, a)=(x, b)=1$ and $(a, b)=1$, then $(x, a b)=1$ as well.
Proof. By assumption there are integer numbers $\alpha, \beta, \gamma, \delta$ such that

$$
\begin{gathered}
(x, a)=\alpha x+\beta a=1 \\
(x, b)=\gamma x+\delta b=1
\end{gathered}
$$

Multiplying the first equation by $b q$ and the second by $a p$ and adding them we get

$$
(\alpha x+\beta a) b q+(\gamma x+\delta b) a p=b q+a p .
$$

Taking to account that $(a, b)=a p+b q=1$, we see that the right hand side is 1 , whence

$$
\begin{aligned}
& (\alpha x+\beta a) b q+(\gamma x+\delta b) a p=1 \\
& x(\alpha b q+\gamma q p)+a b(\beta q+\delta p)=1 .
\end{aligned}
$$

thus $(x, a b)=1$ as well. Lemma 2 is proved.
Corollary 3. $(a+b, a b)=1$.
Proof. By Lemma 1 we have that $(a+b, a)=(a+b, b)=1$. Then from Lemma 2 applied to $x=a+b$ it follows that $(a+b, a b)=1$. Corollary 3 is proved.

Now we can complete the proof. Notice that by definition $(a-b, a+b, a b)$ divides $a+b$ and $a b$, whence it must divide $(a+b, a b)=1$. Therefore $(a-b, a+b, a b)=(a+b, a b)=1$.

