Answer on Question \#52498 - Math - Calculus

Task

> find points of discontinuity, if any $\begin{aligned} f(x) & =|x-3| \text {, if } x>=1 \\ & =x^{*} x / 4-3 x / 2+13 / 4, \text { if } x<1\end{aligned}$

Solution

$f(x)=\left\{\begin{array}{l}|x-3|, x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, x<1\end{array}\right.$.
We have to check discontinuity at point $x=1$, if the branches correspond to the same value at $x=1$.

The first branch yields $|1-3|=2$ and the second branch yields $1 / 4-3 / 2+13 / 4=2$ at $x=1$.
We can see the functions approach the same value at $x=1$, so there is no discontinuity at $x=1$.
Answer: there are no discontinuities.

