Answer on Question #52495 - Math - Algorithms | Quantitative Methods

The bacteria concentration in a reservoir varies as

$$c = e^t - (t^3/6)(e^0.3t) - t^2/2 - t$$

where is the time in seconds. Use the Newton-Raphson method to estimate the time required for the bacteria concentration to reach 1 (correct up to 2 decimal places)

Solution

$$c=e^{t}-\frac{t^{3}}{6}e^{0.3t}-\frac{t^{2}}{2}-t=1 \rightarrow e^{t}-\frac{t^{3}}{6}e^{0.3t}-\frac{t^{2}}{2}-t-1=0;$$

Newton-Raphson method:

$$t_{n+1} = t_n - \frac{f(t_n)}{f'(t_n)}$$

Here
$$f(t)=e^t-rac{t^3}{6}e^{0.3t}-rac{t^2}{2}-t-1$$
, $f'(t)=e^t-rac{t^2(t+10)}{20}e^{0.3t}-t-1$

n	t_n
0	3
1	2.695
2	2.490
3	2.390
4	2.365
5	2.363

www.AssignmentExpert.com	

Thus, the bacteria concentration will reach 1 in 2.36 sec.