Answer on Question \#52428 - Math - Graph Theory

Let Kn be such that vertices are labeled $1,2,3 \ldots . . n$. number of simple paths between v 1 and vn such that the labels on the paths are strictly increasing
a) $2^{\wedge} n$
b) $2^{\wedge} n-2$
c) $(\mathrm{n}-2)$!
d) n !

Solution

$$
\begin{equation*}
\binom{n^{2} / 2}{m} \tag{A}
\end{equation*}
$$

The number of simple graphs of n vertices and $0,1,2, \ldots, n^{2} / 2$ edges are obtained by substituting $0,1,2, \ldots, n^{2} / 2$ for m in (A). The sum of all such numbers is the number of all simple graphs with n vertices. Therefore the total number of simple, labeled graphs of n vertices is

$$
\binom{n^{2} / 2}{0}+\binom{n^{2} / 2}{1}+\binom{n^{2} / 2}{2}+\ldots+\binom{n^{2} / 2}{n^{2}}=2^{n^{2} / 2}=2^{n}
$$

Answer: a) $2^{\wedge} n$

