
(A)

(B)

(C)

Let $O z$ be the vertical line thru the center of the circular base, the $O x y$ plane is the bottom of the solid, and the $O x z$ plane divide the solids into symmetric halves.
(Hint: Calculate $V=\int_{\mathcal{W}} d w, V_{x}=\int_{\mathcal{W}} x d w, V_{y}=$ $\int_{\mathcal{W}} y d w, V_{z}=\int_{\mathcal{W}} z d w$ and the centroid is at $\left.\left(\frac{V_{z}}{V}, \frac{V_{y}}{V}, \frac{V_{z}}{V}\right)\right)$ A.

Solution:

(A) Since the cross-section of the solid doesn't change along the z-axis, z-coordinate of the centroid is $H / 2$ (half-height). Since Oxz plane divides the solid into symmetric halves, the y-coordinate of the centroid is 0 . Therefore, we should only calculate V_{x} and V. The cross-section of the base is given by

$$
A_{b}=\frac{11}{12} \pi R^{2}
$$

Thus, the volume of the solid is

$$
V=H \cdot A_{b}=\frac{11}{12} \pi H \cdot R^{2}
$$

Let's now calculate V_{x} :

$$
\begin{aligned}
V_{x}= & \int_{\mathcal{W}} x d w=\left|\begin{array}{lr}
d w=2 H \sqrt{R^{2}-x^{2}} d x & x \in[-R, 0] \\
d w=2 H\left[\sqrt{R^{2}-x^{2}}-x \tan \frac{\pi}{12}\right] & x \in\left[0, R \cos \frac{\pi}{12}\right]
\end{array}\right|= \\
& =\int_{-R}^{0} x 2 H \sqrt{R^{2}-x^{2}} d x+\int_{0}^{R \cos \frac{\pi}{12}} x 2 H\left[\sqrt{R^{2}-x^{2}}-x \tan \frac{\pi}{12}\right] d x=
\end{aligned}
$$

$$
\begin{aligned}
& =2 H \int_{-R}^{R \cos \frac{\pi}{12}} x \sqrt{R^{2}-x^{2}} d x-2 H \int_{0}^{R \cos \frac{\pi}{12}} x^{2} \tan \frac{\pi}{12} d x= \\
= & H \int_{-R}^{R \cos \frac{\pi}{12}} \sqrt{R^{2}-x^{2}} d\left(x^{2}\right)-2 H \tan \frac{\pi}{12} \int_{0}^{2} x^{2} d x= \\
& =-\left.\frac{2}{3} H\left(R^{2}-x^{2}\right)^{\frac{3}{2}}\right|_{-R} ^{R \cos \frac{\pi}{12}}-\left.\frac{2}{3} H \tan \frac{\pi}{12} x^{3}\right|_{0} ^{R \cos \frac{\pi}{12}}= \\
= & -\frac{2}{3} H R^{3} \sin ^{3} \frac{\pi}{12}-\frac{2}{3} H R^{3} \tan \frac{\pi}{12} \cos ^{3} \frac{\pi}{12}=-\frac{2}{3} H R^{3} \sin \frac{\pi}{12}
\end{aligned}
$$

Therefore, the x-coordinate of the centroid is

$$
\frac{V_{x}}{V}=\frac{-\frac{2}{3} H R^{3} \sin \frac{\pi}{12}}{\frac{11}{12} \pi H \cdot R^{2}}=-\frac{8}{11 \pi} R \sin \frac{\pi}{12}
$$

(B) Since Oxz plane divides the solid into symmetric halves, the y-coordinate of the centroid is 0 . Therefore, we should only calculate V_{x} and V. The cross-section of the base is given by

$$
A_{b}=\frac{\pi}{2} r^{2}
$$

Thus, the volume of the solid is

$$
V=\frac{1}{3} h \cdot A_{b}=\frac{\pi}{6} h \cdot r^{2}
$$

Since $\frac{r}{h}=\tan \frac{\pi}{3}=\sqrt{3}$, we obtain

$$
V=\frac{\pi}{2} h^{3}
$$

Let's first calculate V_{z} :

$$
\begin{aligned}
V_{z} & =\int_{\mathcal{W}} z d w=\left|d w=\frac{\pi}{2} \tan ^{2} \frac{\pi}{3} z^{2} d z \quad z \in[0, h]\right|= \\
& =\int_{0}^{h} \frac{\pi}{2} \tan ^{2} \frac{\pi}{3} z^{3} d z=\frac{\pi}{2} \tan ^{2} \frac{\pi}{3} \int_{0}^{h} z^{3} d z=\frac{3 \pi}{8} h^{4}
\end{aligned}
$$

Therefore, the x-coordinate of the centroid is

$$
\frac{V_{z}}{V}=\frac{\frac{3 \pi}{8} h^{4}}{\frac{\pi}{2} h^{3}}=\frac{3}{4} h
$$

Let's now calculate V_{x}. Since the centroid of the semicircle is located on the line of symmetry at the distance of $\frac{4}{3 \pi}$ of the radius from its center, V_{x} is given by

$$
V_{x}=\int_{0}^{h}\left(\frac{4}{3 \pi} z \tan \frac{\pi}{3}\right) \frac{\pi}{2} \tan ^{2} \frac{\pi}{3} z^{2} d z=
$$

$$
=\frac{2}{3} \tan ^{3} \frac{\pi}{3} \int_{0}^{h} z^{3} d z=\frac{\sqrt{3}}{2} h^{4}
$$

Therefore, the x-coordinate of the centroid is

$$
\frac{V_{x}}{V}=\frac{\frac{\sqrt{3}}{2} h^{4}}{\frac{\pi}{2} h^{3}}=\frac{\sqrt{3}}{\pi} h
$$

(C) Since Oxz plane divides the solid into symmetric halves, the y-coordinate of the centroid is 0 . Let the full height of the solid be denoted as $h(h=2)$ and the radius of the base be denoted as $r(r=1)$. The area of the base is

$$
A_{b}=\pi r^{2}=\pi
$$

The volume of the solid is

$$
V=\frac{h}{2} A_{b}+\frac{1}{2}\left(\frac{h}{2} A_{b}\right)=\frac{3}{4} h \cdot A_{b}=\frac{3}{2} \pi
$$

Let's first calculate V_{x} :

$$
\begin{gathered}
V_{x}=\int_{-r}^{r} x 2 \sqrt{r^{2}-x^{2}}\left(\frac{3}{4} h+\frac{1}{2} x\right) d x= \\
=\frac{3}{2} \int_{-1}^{1} \sqrt{r^{2}-x^{2}} d\left(x^{2}\right)+\int_{-1}^{1} x^{2} \sqrt{r^{2}-x^{2}} d x=\frac{\pi}{8}
\end{gathered}
$$

Therefore, the z -coordinate of the centroid is

$$
\frac{V_{x}}{V}=\frac{\frac{\pi}{8}}{\frac{3}{2} \pi}=\frac{1}{12}
$$

Let's now calculate V_{z} :

$$
\begin{gathered}
V_{z}=\int_{0}^{\frac{h}{2}} z \pi r^{2} d z+\int_{\frac{h}{2}}^{h} z\left\{\frac{\pi}{2}-\arctan \right. \\
\left.\frac{\sqrt{1-(2 z-3)^{2}}}{2 z-3}-(2 z-3) \sqrt{1-(2 z-3)^{2}}\right\} d z= \\
=\frac{\pi}{2}+\frac{21}{32} \pi=\frac{37}{32} \pi
\end{gathered}
$$

Therefore, the z -coordinate of the centroid is

$$
\frac{V_{z}}{V}=\frac{\frac{37}{32} \pi}{\frac{3}{2} \pi}=\frac{37}{48}
$$

Answer:

(A) $\left(-\frac{8}{11 \pi} R \sin \frac{\pi}{12}, 0, \frac{H}{2}\right)$
(B) $\left(\frac{\sqrt{3}}{\pi} h, 0, \frac{3}{4} h\right)$
(C) $\left(\frac{1}{12}, 0, \frac{37}{48}\right)$

