Answer on Question \#52362 - Math - Calculus

Let $f(x)=\arctan x$. Find $f^{\prime}(x)$.

Solution

Let $f(x)=\arctan (x)=>\tan (f(x))=x$.
Where x is any real number and $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. Suppose we know that $\frac{d \tan (y)}{d y}=\frac{1}{\cos ^{2} y}=\sec ^{2} y$, but do not know $\frac{d(\arctan y)}{d y}$.

Differentiate both sides of $\tan (f(x))=x$ with respect to x :

$$
\begin{gathered}
\frac{d}{d x}(\tan (f(x)))=\frac{d}{d x}(x), \\
\sec ^{2}(f(x)) * \frac{d(f(x))}{d x}=1 \\
\frac{d(f(x))}{d x}=\frac{1}{\sec ^{2}(f(x))}
\end{gathered}
$$

However,

$$
\sec ^{2}(f(x))=1+\tan ^{2}(f(x))=1+x^{2}
$$

Thus, if $f(x)=\arctan (x)$, then $f^{\prime}(x)=\frac{1}{1+x^{2}}$.
Answer: $f^{\prime}(x)=\frac{1}{1+x^{2}}$.

