Answer on Question \#52361 - Math - Vector Calculus

Question

For the following vectors
$a=(2,3,5), b=(4,6,8), c=(-1,-5,9)$
Calculate
$a \cdot(b \times c)$

Solution

Method 1

The cross (or vector) product is

$$
\begin{gathered}
b \times c=\left|\begin{array}{ccc}
i & j & k \\
4 & 6 & 8 \\
-1 & -5 & 9
\end{array}\right|=\left|\begin{array}{cc}
6 & 8 \\
-5 & 9
\end{array}\right| i-\left|\begin{array}{cc}
4 & 8 \\
-1 & 9
\end{array}\right| j+\left|\begin{array}{cc}
4 & 6 \\
-1 & -5
\end{array}\right| k=(6 \cdot 9-(-5) \cdot 8) i- \\
-(4 \cdot 9-(-1) \cdot 8) j+(4 \cdot(-5)-(-1) \cdot 6) k=94 i-44 j-14 k=(94,-44,-14)
\end{gathered}
$$

The dot (or scalar) product of vectors a and $b \times c$ is

$$
a \cdot(b \times c)=(2,3,5) \cdot(94,-44,-14)=2 \cdot 94-3 \cdot 44-5 \cdot 14=-14
$$

Method 2

The scalar triple product is
$a \cdot(b \times c)=\left|\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z}\end{array}\right|=\left|\begin{array}{ccc}2 & 3 & 5 \\ 4 & 6 & 8 \\ -1 & -5 & 9\end{array}\right|=2\left|\begin{array}{cc}6 & 8 \\ -5 & 9\end{array}\right|-3\left|\begin{array}{cc}4 & 8 \\ -1 & 9\end{array}\right|+5\left|\begin{array}{cc}4 & 6 \\ -1 & -5\end{array}\right|==$ $2(6 \cdot 9-(-5) \cdot 8)-3(4 \cdot 9-(-1) \cdot 8)+5 \cdot(4 \cdot(-5)-(-1) \cdot 6)==2 \cdot(54+40)-$ $3(36+8)+5(-20+6)=2 \cdot 94-3 \cdot 44-5 \cdot 14=-14$.

Answer: -14.

