Answer on Question \#52359 - Math - Vector Calculus

For the following vectors $\vec{a}=(3,5,7)$ and $\vec{b}=(4,6,8)$ calculate the following:
a) $\vec{a} \times \vec{b}$
b) $\vec{b} \times \vec{a}$.

Solution

The cross product or vector product between \vec{a} and \vec{b} is written as $\vec{a} \times \vec{b}$. The result of a cross product is a new vector $\vec{c}=\vec{a} \times \vec{b}$. Magnitude of \vec{c} is defined as $|\vec{c}|=|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$, where θ is the angle between \vec{a} and \vec{b} when both of vectors are drawn 'tail-o-tail'. The vector \vec{c} is perpendicular to the plane formed by \vec{a} and \vec{b}.

The cross product is anticommutative: $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$.
Let's evaluate the cross product using \vec{a} and \vec{b} in component form:
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|=\vec{i}\left(a_{y} b_{z}-a_{z} b_{y}\right)-\vec{j}\left(a_{x} b_{z}-a_{z} b_{x}\right)+\vec{k}\left(a_{x} b_{y}-a_{y} b_{x}\right)$.
a) $\quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 3 & 5 & 7 \\ 4 & 6 & 8\end{array}\right|=\vec{i}(5 \cdot 8-7 \cdot 6)-\vec{j}(3 \cdot 8-4 \cdot 7)+\vec{k}(3 \cdot 6-5 \cdot 4)=\vec{i}(-2)-\vec{j}(-4)+\vec{k}(-2)=$

$$
=-2 \vec{i}+4 \vec{j}-2 \vec{k}
$$

b) First method (straightforward computation)

$$
\begin{aligned}
& \vec{b} \times \vec{a}=\left|\begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
4 & 6 & 8 \\
3 & 5 & 7
\end{array}\right|=\vec{i}(7 \cdot 6-5 \cdot 8)-\vec{j}(4 \cdot 7-3 \cdot 8)+\vec{k}(5 \cdot 4-3 \cdot 6)=\vec{i}(2)-\vec{j}(4)+\vec{k}(2)= \\
& =2 \vec{i}-4 \vec{j}+2 \vec{k}
\end{aligned}
$$

Second method (using properties of cross product)
Apply result from a) $\vec{a} \times \vec{b}=-2 \vec{i}+4 \vec{j}-2 \vec{k}$ and the next property of cross product:

$$
\vec{b} \times \vec{a}=-\vec{a} \times \vec{b}=-(-2 \vec{i}+4 \vec{j}-2 \vec{k})=2 \vec{i}-4 \vec{j}+2 \vec{k}
$$

Answer:

a) $\vec{a} \times \vec{b}=-2 \vec{i}+4 \vec{j}-2 \vec{k}$;
b) $\vec{b} \times \vec{a}=2 \vec{i}-4 \vec{j}+2 \vec{k}$.

