Answer on Question #52359 – Math – Vector Calculus

For the following vectors $\vec{a} = (3,5,7)$ and $\vec{b} = (4,6,8)$ calculate the following: a) $\vec{a} \times \vec{b}$ b) $\vec{b} \times \vec{a}$.

Solution

The cross product or vector product between \vec{a} and \vec{b} is written as $\vec{a} \times \vec{b}$. The result of a cross product is a new vector $\vec{c} = \vec{a} \times \vec{b}$. Magnitude of \vec{c} is defined as $|\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$, where θ is the angle between \vec{a} and \vec{b} when both of vectors are drawn 'tail-o-tail'. The vector \vec{c} is perpendicular to the plane formed by \vec{a} and \vec{b} .

The cross product is anticommutative: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$.

Let's evaluate the cross product using \vec{a} and \vec{b} in component form:

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i} (a_y b_z - a_z b_y) - \vec{j} (a_x b_z - a_z b_x) + \vec{k} (a_x b_y - a_y b_x).$$

 $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 5 & 7 \\ 4 & 6 & 8 \end{vmatrix} = \vec{i} (5 \cdot 8 - 7 \cdot 6) - \vec{j} (3 \cdot 8 - 4 \cdot 7) + \vec{k} (3 \cdot 6 - 5 \cdot 4) = \vec{i} (-2) - \vec{j} (-4) + \vec{k} (-2) = \vec{i} (-2) - \vec{j} (-2) + \vec{j}$

$$= -2\vec{i} + 4\vec{j} - 2k$$

b) First method (straightforward computation)

$$\vec{b} \times \vec{a} = \begin{vmatrix} i & j & k \\ 4 & 6 & 8 \\ 3 & 5 & 7 \end{vmatrix} = \vec{i} (7 \cdot 6 - 5 \cdot 8) - \vec{j} (4 \cdot 7 - 3 \cdot 8) + \vec{k} (5 \cdot 4 - 3 \cdot 6) = \vec{i} (2) - \vec{j} (4) + \vec{k} (2) =$$

 $= 2\vec{i} - 4\vec{j} + 2\vec{k}.$

Second method (using properties of cross product)

Apply result from a) $\vec{a} \times \vec{b} = -2\vec{i} + 4\vec{j} - 2\vec{k}$ and the next property of cross product: $\vec{b} \times \vec{a} = -\vec{a} \times \vec{b} = -(-2\vec{i} + 4\vec{j} - 2\vec{k}) = 2\vec{i} - 4\vec{j} + 2\vec{k}$.

Answer:

a)
$$\vec{a} \times \vec{b} = -2\vec{i} + 4\vec{j} - 2\vec{k}$$

b) $\vec{b} \times \vec{a} = 2\vec{i} - 4\vec{j} + 2\vec{k}$.