Answer on Question \#52356 - Mathematics - Vector Calculus

Question

For the following vectors: $a=(1,-5,9), b=(-4,12,-6), c=(-3,5,-7)$. Calculate the following dot products:
a) $a \cdot b$;
b) a.c;
c) $b \cdot c$.

Solution

Let us write the formula for the dot (or scalar) product in terms of vector components. For the two three-dimensional vectors

$$
\begin{equation*}
\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)=a_{1} \vec{\imath}+a_{2} \vec{\jmath}+a_{3} \vec{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)=b_{1} \vec{\imath}+b_{2} \vec{\jmath}+b_{3} \vec{k} \tag{2}
\end{equation*}
$$

where $\vec{\imath}, \vec{\jmath}, \vec{k}$ - the standard unit vectors of orthogonal coordinate system, the dot product is defined as

$$
\begin{equation*}
(\vec{a} \cdot \vec{b})=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} . \tag{3}
\end{equation*}
$$

Hence, using (1)-(3) for the given vectors we get:
a)

$$
(\vec{a} \cdot \vec{b})=1 \cdot(-4)+(-5) \cdot 12+9 \cdot(-6)=-4-60-54=-118
$$

b)

$$
(\vec{a} \cdot \vec{c})=1 \cdot(-3)+(-5) \cdot 5+9 \cdot(-7)=-3-25-63=-91
$$

c)

$$
(\vec{b} \cdot \vec{c})=(-4) \cdot(-3)+12 \cdot 5+(-6) \cdot(-7)=12+60+42=114
$$

Answer:
a) $(\vec{a} \cdot \vec{b})=-118$;
b) $(\vec{a} \cdot \vec{c})=-91$;
c) $(\vec{b} \cdot \vec{c})=114$.

