Answer on Question \#52240 - Math - Vector Calculus

1. IF line $(O A)=4 i+3 j$, line $(O B)=6 i-2 j$ and line $(O C)=2 i-j$. Deduce the length of the triangle CA.

13--V
20--V
29--V
17--V
2 What quantity have both magnitude and direction ?
vector
scalar
mass
dot product
3 Find the vector product $a x b$. If $a=i+2 j-k$ and $b=2 i+3 j+k$
$5 i-3 j-k$
$2 i-4 j-k$
$3 i+j-k$
I-j +3 k
$4 a$ and b are vectors defined by $a=8 i+2 j-3 k$ and $b=3 i-6 j+4 k$, where I, j, k are mutually perpendicular unit vectors. Show that a and b are perpendicular to each other.
90
45
1
0

5 a and b are vectors defined by $\mathrm{a}=8 \mathrm{i}+2 \mathrm{j}-3 \mathrm{k}$ and $\mathrm{b}=3 \mathrm{i}-6 \mathrm{j}+4 \mathrm{k}$, where $\mathrm{I}, \mathrm{j}, \mathrm{k}$ are mutually perpendicular unit vectors. Calculate a and b.

0
2
4

Solution

1. $\overline{A C}=\overline{O C}-\overline{O A}=2 i-j-(4 i+3 j)=-2 i-4 j$

$$
|\overline{A C}|=\sqrt{2^{2}+4^{2}}=\sqrt{20}
$$

2. vector

3. Cross (or vector) product

$$
\begin{aligned}
& a \times b=\left|\begin{array}{ccc}
i & j & k \\
1 & 2 & -1 \\
2 & 3 & 1
\end{array}\right|=\left|\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right| i-\left|\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right| j+\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right| k= \\
& =5 i-3 j-k
\end{aligned}
$$

4. Dot (or scalar) product

$$
a b=8 * 3+2 *(-6)+(-3) * 4=24-12-12=0
$$

Angle between a and bequals $\mathbf{9 0}^{\boldsymbol{o}}$.
5. Dot (or scalar) product

$$
a b=8 * 3+2 *(-6)+(-3) * 4=24-12-12=0
$$

