Answer on Question \#52234 - Math - Vector Calculus

1) What are the component of a vector $\mathrm{l}, \mathrm{x}, \mathrm{k}$
I, j,k
y, x, i
w, l, k

ANSWER:

l,j,k
7) If
r4=r1+r2+r3
,which of the vectors are linearly dependent.
r1
r3
r4
r2
ANSWER:
Def.
Vectors $a_{1}, a_{2}, \ldots, a_{n}$ are linearly dependent if there exist scalars (real numbers) $k_{1}, k_{2}, \ldots, k_{n}$, not all of which are zero, such that their linear combination
$k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{n} a_{n}=0$.
This problem deals with r1+r2+r3-r4=0
Vectors $a_{1}, a_{2}, \ldots, a_{n}$ are linearly independent if the equation
$k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{n} a_{n}=0$ can only be satisfied by $k_{1}=0, k_{2}=0, \ldots, k_{n}=0$.
Thus, vectors r1,r2, r3, r4 are linearly dependent.
8) If $u . v=v . u$, what does the law conotes;
associative
commutative
distributive
scalar
ANSWER:
commutative
9) A dot product is said to be distributive, if .. \qquad
m.u=u.m
$m(u . v)=v(m . v)$
$u .(v+w)=(u \cdot v+u \cdot w)$
$\mathrm{m}=\mathrm{u}$

ANSWER:

$\mathrm{m} \cdot \mathrm{u}=\mathrm{u} \cdot \mathrm{m}$ - commutative

$m(u \cdot v)=v(m \cdot v)$ - associative
$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=(\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w})$ - distributive
$\mathrm{m}=\mathrm{u}$ - scalar
10) Given that :
r1=6i-8j+2k,
$r 2=4 i+5 j+7 k$,
$r 3=-2 i+j+6 k$ is a vector.
Find r1r2
30
26
-26
19
ANSWER:
The dot product r1r2=6•4+(-8) $\cdot 5+2 \cdot 7=24-40+14=-2$

